ORACLE"

Oracle® Database
Advanced Security Guide
12c Release 1 (12.1)
E50333-18

June 2017

Oracle Database Advanced Security Guide, 12¢ Release 1 (12.1)
E50333-18

Copyright © 1996, 2017, Oracle and/or its affiliates. All rights reserved.
Primary Author: Patricia Huey

Contributors: Rahil Mir, Paul Youn, Adam Lee, Preetam Ramakrishna, Gopal Mulagund, Rajbir Chahal, Min-
Hank Ho, Michael Hwa, Sudha Iyer, Adam Lindsey, Supriya Kalyanasundaram, Lakshmi Kethana, Andrew
Koyfman, Vikram Pesati, Andy Philips, Philip Thornton, Paul Needham, Peter Wahl

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ... Xi
AUAIEIICE .. Xi
Documentation AcCeSSIDILILYcccvvviimiiiiiiiiiiiiiic s Xi
Related DOCUINENES. ...t Xi
CONVEINEIONS ... eueiiiiieiieiieieeie ettt ettt ettt ettt s a e s e bbbttt et et et eat e bt eatsateb e bt sbesaesbensensenten Xii

Changes in This Release for Oracle Database Advanced Security Guide xXiii
Changes in Oracle Database Advanced Security 12c Release 1 (12.1.0.2) ...c.ccovuvuevvivvvvevvinrrneene Xiii

INEW FEATUTES ...t Xiii
Changes in Oracle Database Advanced Security 12c Release 1 (12.1.0.1) ...c.coovuiiiviiiiiiiiiincnnes Xiv
INEW FEAtUIES ..c.couiiiiiiiiiiiii s Xiv
Deprecated Features...........ooiiiiiiiiii s XV
Other CRANGES ... XV

1 Introduction to Oracle Advanced Security

1.1 Transparent Data ENCIYPHON......covoiiiiiiiiii s 1-1

1.2 Oracle Data REAACHONco.etrueirieiriiieierieietet ettt ettt ettt sttt b et b et b et be s enes 1-1

Part | Using Transparent Data Encryption

2

Introduction to Transparent Data Encryption

2.1 What Is Transparent Data ENCIyption?ccccooviviiiiiiiiniiiicrcrreeceeeeeeeeeas 2-1
2.2 Benefits of Using Transparent Data ENCryptioncccooiiiiiiiiiiiiniiiicccccce, 2-1
2.3 Who Can Configure Transparent Data Encryption?cccooooiiiiiiicc, 2-2
2.4 Types and Components of Transparent Data Encryption.........c.cccooeeiieiiiiiiicinininicccne 2-2
2.4.1 About Transparent Data Encryption Types and Components..........ccccocoveccciinncace. 2-3
2.4.2 How Transparent Data Encryption Column Encryption Worksccceiiiiinnace. 2-3
2.4.3 How Transparent Data Encryption Tablespace Encryption Worksccccoooeeeeenn. 2-4
2.44 How the Keystore for the Storage of TDE Master Encryption Keys Works................. 2-5
2.4.5 Supported Encryption and Integrity Algorithms...........ccocooiiii 2-7

3 Configuring Transparent Data Encryption

3.1 Configuring a Software Keystore ... 3-1
3.1.1 About Configuring a Software Keystorec.ccccooruiiiniciiiiniiicccce e 3-1
3.1.2 Step 1: Set the Software Keystore Location in the sqlnet.ora File.........cccoceiiiinaace. 3-2
3.1.3 Step 2: Create the Software Keystore..........cccoceueiiieieiniiiiniiiceccec, 3-4
3.1.4 Step 3: Open the Software Keystore ... 3-7
3.1.5 Step 4: Set the Software TDE Master Encryption Key.........coooriiiiii, 3-8
3.1.6 Step 5: Encrypt Your Data.......ooviiiiiiiiiiii 3-10

3.2 Configuring a Hardware Keystore...........ccccoeviiiiiiniiiiiiiiceceeeceeeeeeeeeeeeeeeeeeees 3-10
3.2.1 About Configuring a Hardware (External) Keystore............cccccooviiniininnnnnnnnnn. 3-11
3.2.2 Step 1: Set the Hardware Keystore Type in the sqlnet.ora Fileccccoooiii 3-11
3.2.3 Step 2: Configure the Hardware Security Module..........c.c.coovoriiiiiiininiie, 3-11
3.2.4 Step 3: Open the Hardware Keystore..........cccooviiiiiinie, 3-12
3.2.5 Step 4: Set the Hardware Keystore TDE Master Encryption Keyccoceviiinnnce. 3-14
3.2.6 Step 5: Encrypt Your Data.........ccooiviiiiiiiiiiiiii 3-16

3.3 Encrypting Columns in Tablescccoooiiiiiiiiiic e 3-16
3.3.1 About Encrypting Columns in Tables............cccoooiiiiiiiii 3-16
3.3.2 Data Types That Can Be Encrypted with TDE Column Encryptioncccccuevuneeee. 3-17
3.3.3 Restrictions on Using Transparent Data Encryption Column Encryption................. 3-18
3.3.4 Creating Tables with Encrypted Colummns ..., 3-18
3.3.5 Encrypting Columns in Existing Tables..........cccccooiiiiiiniiiiiiiccec 3-22
3.3.6 Creating an Index on an Encrypted Columnccoccoiiiiiiiiiic 3-23
3.3.7 Adding Salt to an Encrypted Colummn.........cccccceiiiiiiiiiiiiiiieeeec e 3-24
3.3.8 Removing Salt from an Encrypted Column ..., 3-24
3.3.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns... 3-24

3.4 Encrypting TableSpacescoucueiiiiiiieiiiicie e 3-25
3.4.1 Restrictions on Using Transparent Data Encryption Tablespace Encryption............ 3-25
3.4.2 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption.. 3-25
3.4.3 Step 2: Set the Tablespace TDE Master Encryption Key.........cccoviiiininininininnnnnne. 3-27
3.4.4 Step 3: Create the Encrypted Tablespacecccoouoieiiiiiiiciciiiccecec 3-27

3.5 Transparent Data Encryption Data Dynamic and Data Dictionary Views...........ccccccoueeeeee. 3-29

4 Managing the Keystore and the TDE Master Encryption Key

4.1 Managing the KeystOrecccooiiiiiiiiiiiii 4-1
4.1.1 Changing the Password of a Password-Based Software Keystorecccccceuinnnne. 4-2
4.1.2 Changing the Password of a Hardware Keystore..............cccocoiiiiiniiiinniciiiene. 4-3
4.1.3 Backing Up Password-Based Software Keystores..........cccccooeriiiiiicininicciccnnen, 4-3
4.1.4 Backups of the Hardware Keystore..........cccouoiiiiiiiiiiiic 4-5
4.1.5 Merging Software KeyStores...........cccouruiiririiiniiieiiiee e 4-6
4.1.6 Moving a Software Keystore to a New Location ..., 4-9
4.1.7 Moving a Software Keystore Out of Automatic Storage Management....................... 4-10
4.1.8 Migrating Between a Software Password Keystore and a Hardware Keystore 4-11

4.2

4.3

44

4.1.9 Migration of Keystores to and from Oracle Key Vault........cc.cccooviiniiniinininnnnn.
4.1.10 CloSing @ KEYSTOTE......c.ccuiuiuiiiiiiiiiiccccirccc et
4.1.11 Using a Software Keystore That Resides on ASM Volumes.........ccccoovviviiiininnnce.
4.1.12 Backup and Recovery of Encrypted Data.........ccoooiiiiiniiiiiiiiiice,
4.1.13 Deletion of KeYStOTes..........covueiiiiiiuiiiiicici i
Managing the TDE Master Encryption Key........ccoooiiiiiie,
42.1 Creating TDE Master Encryption Keys for Later Use...........cccouoiiniinininnincncncnenennnce.
4.2.2 Activation of TDE Master Encryption Keys..........cccooiiiiniiiiiniiiiiee,
4.2.3 TDE Master Encryption Key Attribute Managementccoviininnniinnnnn.
424 Creating Custom TDE Master Encryption Key Attributes for Reporting Purposes .
425 Setting and Resetting the TDE Master Encryption Key in the Keystore......................
42.6 Exporting and Importing the TDE Master Encryption Key..........ccccooiiniiniinnnnne.
4.2.7 Management of TDE Master Encryption Keys Using Oracle Key Vault
Storing Secrets Used by Oracle Database.............cccoeueiiirieiniiciicccc e,
4.3.1 About Storing Oracle Database Secrets in a Keystorec.cccooooeeiiiiiiinnn
4.3.2 Storage of Oracle Database Secrets in a Software Keystore.............cccccocvvviviiininnnnnns
4.3.3 Example: Adding an HSM Password to a Software Keystore...........ccccccoueviiininnnnce.
4.3.4 Example: Changing an HSM Password That Is Stored as a Secret in a Software
KEYSEOTE....oviiiiittt s
4.3.5 Example: Deleting an HSM Password That Is Stored as a Secret in a Software
KEYStOT....oviiit e
4.3.6 Storage of Oracle Database Secrets in a Hardware Keystore..........c.cccoovvviiniiininnen.
4.3.7 Example: Adding an Oracle Database Secret to a Hardware Keystore.......................
4.3.8 Example: Changing an Oracle Database Secret in a Hardware Keystore...................
4.3.9 Example: Deleting an Oracle Database Secret in a Hardware Keystore......................
4.3.10 Configuring Auto-Login Hardware Security Modulescccooviiinnnnnn.
Storing Oracle GoldenGate Secrets in a Keystore..........cccoueviiiiiiiiiiiiiiiiccce,
4.4.1 About Storing Oracle GoldenGate Secrets in Keystores.............ccoeeeeiininccncinincncnee.
4.4.2 Oracle GoldenGate Extract Classic Capture Mode TDE Requirements......................
4.4.3 Configuring TDE Keystore Support for Oracle GoldenGate...........cccoovviiiniininnnnce.

5 General Considerations of Using Transparent Data Encryption

51
52

5.3

5.4
55
5.6

Compression and Data Deduplication of Encrypted Data............ccoooriiiiiiiiii,
Security Considerations for Transparent Data Encryption ...,
5.2.1 Transparent Data Encryption General Security Advice........ccccoovviiiiiininnnnnn.
5.2.2 Transparent Data Encryption Column Encryption-Specific Advicecccccvvrueacee.
5.2.3 Managing Security for Plaintext Fragments.............ccccooooiiiiiiiiiiiicne,
Performance and Storage Overhead of Transparent Data Encryption............ccoooceiiiinnnnan.
5.3.1 Performance Overhead of Transparent Data Encryption..........ccccooooeeieiiiiniiiiinnnan.
5.3.2 Storage Overhead of Transparent Data Encryption.........ccccoovvvvvinininnncnnnnn,
Modifying Your Applications for Use with Transparent Data Encryptioncccccccovueeeee.
How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT
Using Transparent Data Encryption with PKI ENCryption..........cccoooiiieiiiiiiieicicccc,

5.6.1 Software Master Encryption Key Use with PKI Key Pairs..........cccccooevinirininicinininnne. 5-9
5.6.2 TDE Tablespace and Hardware Keystores with PKI Encryptioncccccecevvvcnnee. 5-10
5.6.3 Backup and Recovery of a PKI Key Pair ..., 5-10

6 Using Transparent Data Encryption with Other Oracle Features

6.1 How Transparent Data Encryption Works with Export and Import Operations.................... 6-1
6.1.1 About Exporting and Importing Encrypted Dataccccovvvivinnnnninnniin, 6-1
6.1.2 Exporting and Importing Tables with Encrypted Columnsccccceueieiiriiininnnnnn. 6-2
6.1.3 Using Oracle Data Pump to Encrypt Entire Dump Sets.........ccccccovvivvviiinniininnn, 6-3

6.2 How Transparent Data Encryption Works with Oracle Data Guardcccccccevvvvirnnenne. 6-4

6.3 How Transparent Data Encryption Works with Oracle Real Application Clusters............... 6-4
6.3.1 About Using Transparent Data Encryption with Oracle Real Application Clusters.. 6-5
6.3.2 Using a Non-Shared File System to Store a Software Keystore in Oracle RAC........... 6-5

6.4 How Transparent Data Encryption Works with SecureFiles............cccooovvivinniiniinncnnnn 6-6
6.4.1 About Transparent Data Encryption and SecureFilescccccocovvvvnnnnninnnnene. 6-6
6.4.2 Example: Creating a SecureFiles LOB with a Specific Encryption Algorithm............. 6-7
6.4.3 Example: Creating a SecureFiles LOB with a Column Password Specified................. 6-7

6.5 How Transparent Data Encryption Works in a Multitenant Environmentcc.cccoco..... 6-7
6.5.1 About Using Transparent Data Encryption in a Multitenant Environment................. 6-8
6.5.2 Operations That Must Be Performed in ROOt..........ccccovuviiiiiniiiiiniiiiicrccne 6-8
6.5.3 Operations That Can Be Performed in Root or in a PDB..........ccccccevviiinnnininnnn 6-10
6.5.4 Exporting and Importing TDE Master Encryption Keys for a PDB............................. 6-10
6.5.5 Unplugging and Plugging a PDB with Encrypted Data in a CDB.............c....cc......... 6-12
6.5.6 How Keystore Open and Close Operations Work in a Multitenant Environment ... 6-14
6.5.7 Finding the Keystore Status for All of the PDBs in a Multitenant Environment....... 6-15

6.6 How Transparent Data Encryption Works with Oracle Call Interface............cccccceuvvvurininnnnn 6-16

6.7 How Transparent Data Encryption Works with Editions ..o 6-16

6.8 Configuring Transparent Data Encryption to Work in a Multidatabase Environment-....... 6-16

7 Frequently Asked Questions About Transparent Data Encryption
7.1 Transparency Questions About Transparent Data Encryptioncccocevvvviviiinnininnnnnn, 7-1

7.2 Performance Questions About Transparent Data Encryption.........cccecevvvvvvnnnnnnnnenene. 7-4

Part Il Using Oracle Data Redaction

8 Introduction to Oracle Data Redaction

8.1 What Is Oracle Data REAACIONT?ccevveieieiiieiieieeeti ettt et sesaesaessesaeseeseesassessessassessens 8-1
8.2 When to Use Oracle Data Redaction.........cc.ecveiriririininininesisieseiesiesieeesseseseeeeesssssessessessessens 8-2
8.3 Benefits of Using Oracle Data Redactioncooeeiiiinniniiiiccccee 8-2
8.4 Target Use Cases for Oracle Data Redactionccccouoiiiiioiiiiicce 8-2
8.4.1 Oracle Data Redaction Use with Database Applicationsc.cccocoeueieiiiinieiniinnnan, 8-3
8.4.2 Oracle Data Redaction with Ad Hoc Database Queries Considerations 8-3

Vi

9 Oracle Data Redaction Features and Capabilities

10

9.1 Full Data Redaction to Redact All Data.........cccccooviviiiiiiinininiiiiiiiiics 9-1
9.2 Partial Data Redaction to Redact Sections of Data.........cccocoevuviviiiviiiniiiiniiinns 9-2
9.3 Regular Expressions to Redact Patterns of Datacccccoevuviviiiirrrninnnrcnrrreeeeeenes 9-3
9.4 Random Data Redaction to Generate Random Valuesccccccevvviiinnnnnnnnnniinne 9-4
9.5 Comparison of Full, Partial, and Random Redaction Based on Data Typesccccceeuence. 9-5
9.5.1 Oracle Built-in Data Types Redaction Capabilities...........c.cccoorrieiiiiirieiiiiiicicicen, 9-5
9.5.2 ANSI Data Types Redaction Capabilities..........ccccooviviiiiiiiiic, 9-6
9.5.3 User Defined Data Types or Oracle Supplied Types Redaction Capabilities 9-7
9.6 No Redaction for Testing PUIPOSES.........cccceururiririiiiiririiiiiiiiiiriniicrrse s 9-7
Configuring Oracle Data Redaction Policies
10.1 About Oracle Data Redaction POLCIES...........ccciiiiiiiiiiiiiiiiicccccccccccccccces 10-1
10.2 Who Can Create Oracle Data Redaction Policies?ccooeiiiiiiieiiiiiiiiicccci 10-2
10.3 Planning an Oracle Data Redaction POLCYcccceviiiiieiiiiieicc 10-3
10.4 General Syntax of the DBMS_REDACT.ADD_POLICY Procedure.........cccccocoecucueuecccncnes 10-3
10.5 Using Expressions to Define Conditions for Data Redaction Policies............cccccccoeeuiinennes 10-5
10.5.1 About Using Expressions in Data Redaction Policies...........ccccccoeeiiiiiiiiiiiicnnns 10-6
10.5.2 Applying the Redaction Policy Based on User Environment...........ccccccooovriennnn. 10-6
10.5.3 Applying the Redaction Policy Based on Database Roles............c.ccooorueiiiirinnnnnen. 10-7
10.5.4 Applying the Redaction Policy Based on Oracle Label Security Label Dominance 10-7
10.5.5 Applying the Redaction Policy Based on Application Express Session States 10-7
10.5.6 Applying the Redaction Policy to All USers..........ccccocciuiiiiiiiiiiiiiiiiccciccicnnes 10-8
10.6 Creating a Full Redaction Policy and Altering the Full Redaction Value..............c.c........... 10-8
10.6.1 Creating a Full Redaction POLCYccouemiiiiiiii 10-9
10.6.2 Altering the Default Full Data Redaction Value...........cccccocociiiiiiiiicncnccicccnns 10-11
10.7 Creating a Partial Redaction POLICYcccovuiviiniiiiiiiiiceccc s 10-13
10.7.1 About Creating Partial Redaction POLLici€sccccoeiuiiiiiiiiiiiiiiiiiccccins 10-13
10.7.2 Syntax for Creating a Partial Redaction POLiCycccoovmueiiiiiciiiicccc 10-13
10.7.3 Creating Partial Redaction Policies Using Fixed Character Formats 10-14
10.7.4 Creating Partial Redaction Policies Using Character Data Types........ccccocceeueueneeee 10-16
10.7.5 Creating Partial Redaction Policies Using Number Data Types.........c.cccccoeverernnnnee. 10-18
10.7.6 Creating Partial Redaction Policies Using Date-Time Data Typesccceceuuuec. 10-19
10.8 Creating a Regular Expression-Based Redaction POliCycccceveiirieieiiiciciiiccie 10-20
10.8.1 About Creating Regular Expression-Based Redaction Policies............ccccovvvrvnnnnnee. 10-20
10.8.2 Syntax for Creating a Regular Expression-Based Redaction Policyccc.cc....... 10-21
10.8.3 Regular Expression-Based Redaction Policies Using Formats...........ccccccoevuiunnnnens 10-22
10.8.4 Custom Regular Expression Redaction Policiescccoeeueiieiiiiiicicieiiccieee 10-26
10.9 Creating a Random Redaction POLCYccocueveiiiiiiiiii 10-27
10.9.1 Syntax for Creating a Random Redaction Policy.........cccccoeiiiicccciicccccncncnns 10-28
10.9.2 Example: Random Redaction POLiCy ..o 10-28
10.10 Creating a Policy That Uses No Redactioncccooeeiiiiiiinininiccccccee 10-29

Vii

11

12

viii

10.10.1 Syntax for Creating a Policy with No Redaction..........c.ccccoveiiiiiiiinininicinne,
10.10.2 Example: Performing NO Redaction..........cccccociiiiiiiiiiiiiciccicccccceenenes
10.11 Exemption of Users from Oracle Data Redaction Policies............ccccoooeiiiiiiiiiincnnns
10.12 Altering an Oracle Data Redaction POLCY ...
10.12.1 About Altering Oracle Data Redaction Policies..........ccceueuiiiiieiiiiciiiiiccie
10.12.2 Syntax for the DBMS_REDACT.ALTER_POLICY Procedure..........ccccccouvurvrunee.
10.12.3 Parameters Required for DBMS_REDACT.ALTER_POLICY Actions..................
10.12.4 Tutorial: Altering an Oracle Data Redaction Policy..........ccccocvevivviirniiicccnereenen.
10.13 Redacting Multiple COIUMNScccoiiimiiiiiiiiic e
10.13.1 Adding Columns to a Data Redaction Policy for a Single Table or View.............
10.13.2 Example: Redacting Multiple Columns............cooviiiiiiiiiiiiicccccccenes
10.14 Disabling and Enabling an Oracle Data Redaction Policy..........cccccoeoiiiiiiicniciinccnns
10.14.1 Disabling an Oracle Data Redaction POLiCYcccccoeiiiiiiiiiiiiiiiiiccccnes
10.14.2 Enabling an Oracle Data Redaction POLCYccocevoiicieiiiiiic
10.15 Dropping an Oracle Data Redaction POLiCYccoevoiiiieiiiiiiciicc
10.16 Tutorial: SQL Expressions to Build Reports with Redacted Values............cccccouvuvvnnnnnnne.
10.17 Oracle Data Redaction Policy Data Dictionary VIewsccccoiiiiiiiiiicncccncccnes

Using Oracle Data Redaction in Oracle Enterprise Manager

11.1 About Using Oracle Data Redaction in Oracle Enterprise Manager.............cccccococucueucucncnnne
11.2 Oracle Data Redaction WOrkflow..........cccccciiiiiiiiiiiiiiiiiccccccccccecennas
11.3 Management of Sensitive Column Types in Enterprise Manager...........ccccooooeueiriiirnnennnes
11.4 Managing Oracle Data Redaction Formats Using Enterprise Managerc.cccccoeeuennne.
11.4.1 About Managing Oracle Data Redaction Formats Using Enterprise Manager........
11.4.2 Creating a Custom Oracle Data Redaction Format..........c.cccccoeiiiiiiiiiiiiiina.
11.4.3 Editing a Custom Oracle Data Redaction Formatcccccccoiiiiiiiiiiiiiinnns
11.4.4 Viewing Oracle Data Redaction Formats............ccoooeueiiiiiiiiiiniiiiicce
11.4.5 Deleting a Custom Oracle Data Redaction Formatc.ccooeriiiiiniiiice
11.5 Managing Oracle Data Redaction Policies Using Enterprise Managercccccoccccucnnne
11.5.1 About Managing Oracle Data Redaction Policies Using Enterprise Manager.........
11.5.2 Creating an Oracle Data Redaction Policy Using Enterprise Manager...................
11.5.3 Editing an Oracle Data Redaction Policy Using Enterprise Manager
11.5.4 Viewing Oracle Data Redaction Policy Details Using Enterprise Manager
11.5.5 Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager...
11.5.6 Deleting an Oracle Data Redaction Policy Using Enterprise Manager

Oracle Data Redaction Use with Oracle Database Features

12.1 Oracle Data Redaction and DML and DDL Operationsccccoeeeivienieinccnieiniccneeines
12.2 Oracle Data Redaction and Nested Functions, Inline Views, and the WHERE Clause
12.3 Oracle Data Redaction and Database Links..........c.ccccoccoviiiiiiiiiiiiniicccces
12.4 Oracle Data Redaction and Aggregate FUNCHONS ..o
12.5 Oracle Data Redaction and Object TYPeS........ccccouiiiiiiiiiiiiieiieeeeeeeeeeeeenenenenes
12.6 Oracle Data Redaction and XML Generationccccoveueirinieieicininecenneeceseeeneeseeeenene

12.7 Oracle Data Redaction and EdItIONSc..eeoevviiieeeeieieieeeeee ettt eeaee e s e senveesenes 12-3

12.8 Oracle Data Redaction in a Multitenant Environment............cccccoovevvinininiinnin 12-3
12.9 Oracle Data Redaction and Oracle Virtual Private Database.............cccccoovevviiiiniiiiinieninns 12-3
12.10 Oracle Data Redaction and Oracle Database Real Application Security.........c.cccceeeunnee. 12-4
12.11 Oracle Data Redaction and Oracle Database Vault.............cccoooiiiiiiiiiiiiiiiiins 12-4
12.12 Oracle Data Redaction and Oracle Data PUMPcooiiiiiiiiiiiiicccccs 12-4
12.12.1 Oracle Data Pump Security Model for Oracle Data Redactionccccccccccueucnneees 12-4
12.12.2 Export of Objects That Have Oracle Data Redaction Policies Defined 12-5
12.12.3 Export of Data Using the EXPDP Ultility access_method Parameter....................... 12-6
12.12.4 Import of Data into Objects Protected by Oracle Data Redaction............cccc........... 12-7
12.13 Oracle Data Redaction and Data Masking and Subsetting Packc.cccccooovriiiiiinnnnn 12-7

13 Security Considerations for Oracle Data Redaction

13.1 Oracle Data Redaction General Usage Guidelinescccocoeviviiiniviiiniiniiiiiiccicnns 13-1
13.2 Restriction of Administrative Access to Oracle Data Redaction Policies...........ccccceevrurnenen. 13-2
13.3 How Oracle Data Redaction Affects the SYS, SYSTEM, and Default Schemas................... 13-2
13.4 Policy Expressions That Use SYS_CONTEXT Attributescccooeieioiiiiiiiiiiiiicc 13-3
13.5 Oracle Data Redaction Policies on Materialized VIEWSccccccvevieeienieienieeieieeieeeveeeenes 13-3
13.6 Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled........................ 13-3

Glossary

Index

Preface

Welcome to Oracle Database Advanced Security Guide for the 12g Release 1 (12.1) of
Oracle Advanced Security. This guide describes how to implement, configure, and
administer Oracle Advanced Security.

This preface contains:

Audience (page xi)

¢ Documentation Accessibility (page xi)

Related Documents (page xi)

¢ Conventions (page xii)

Audience

Oracle Database Advanced Security Guide is intended for users and systems professionals
involved with the implementation, configuration, and administration of Oracle
Advanced Security including:

¢ Implementation consultants
* System administrators
* Security administrators

e Database administrators (DBAs)

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http:/ /www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http:/ /www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see these Oracle resources:

Xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

e Oracle Database Administrator’s Guide

® Oracle Database Security Guide

Many books in the documentation set use the sample schemas of the default database.
Refer to Oracle Database Sample Schemas for information about how these schemas were
created and how you can use them.

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://ww. oracl e. conf t echnet wor k/ i ndex. ht m

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN website at

http://ww. oracl e. con t echnet wor k/ docunent ati on/ i ndex. ht m

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Xii

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/documentation/index.html

Changes in This Release for

Oracle Database Advanced Security Guide

Oracle Database Advanced Security Guide has had changes in both Oracle Database
Release 1 (12.1.0.1) and Release 1 (12.1.0.2).

® Changes in Oracle Database Advanced Security 12c Release 1 (12.1.0.2) (page xiii)

® Changes in Oracle Database Advanced Security 12c Release 1 (12.1.0.1) (page xiv)

Changes in Oracle Database Advanced Security 12c Release 1 (12.1.0.2)

New Features

The following are changes in Oracle Database Advanced Security Guide for Oracle
Database 12¢ Release 1 (12.1.0.2).

* New Features (page xiii)

The following features are new to this release:
e Support for OLS_LABEL_DOMINATES in Data Redaction Policies (page xiii)

¢ Support for Oracle Key Vault for Keystore and Encryption Key Management
(page xiii)
Support for OLS_LABEL_DOMINATES in Data Redaction Policies

Starting with this release, you can use the public standalone function
OLS_LABEL_DOM NATES in Oracle Data Redaction policies. This function replaces the
SA_UTL. DOM NATES function that takes VARCHAR2 datatype values as input.

See "Applying the Redaction Policy Based on Oracle Label Security Label Dominance
(page 10-7)" for more information.
Support for Oracle Key Vault for Keystore and Encryption Key Management

Oracle Key Vault enables you to centralize the management of software keystores and
TDE encryption keys, as well as other security objects (Java keystores (JKS)), Java
Cryptography Extension (JCEKS) keystores, and credential files) across the enterprise.

See Oracle Key Vault Administrator’s Guide for more information

Xiii

Changes in Oracle Database Advanced Security 12c Release 1 (12.1.0.1)

New Features

Xiv

The following are changes in Oracle Database Advanced Security Guide for Oracle
Database 12¢ Release 1 (12.1.0.1).

¢ New Features (page xiv)
® Deprecated Features (page xv)

¢ Other Changes (page xv)

The following features are new in this release:

* New Keystore and Keystore Management functionality for Transparent Data
Encryption and Other Database Components (page xiv)

¢ New Administrative Privilege for Transparent Data Encryption (page xiv)

® Oracle Data Redaction for Limiting Access to Sensitive Data (page xiv)
New Keystore and Keystore Management functionality for Transparent Data
Encryption and Other Database Components

Oracle Database 12c Release 1 (12.1) introduces a unified key management interface
for Transparent Data Encryption (TDE) and other database components. This eases
key administration tasks, provides for better compliance and tracking, and improves
separation of duty between the database administrator and security administrator.

You now can perform all of the key and keystore management commands by using
the ADM NI STER KEY MANAGEMENT statement instead of the nkst or e or or apKki
command-line utility, Oracle Wallet Manager utility, and ALTER SYSTEMstatement.

See Introduction to Transparent Data Encryption (page 2-1).

New Administrative Privilege for Transparent Data Encryption

For better security and separation of duties, you now can grant the SYSKM
administrative privilege to users who are responsible for managing Transparent Data
Encryption.

See Introduction to Transparent Data Encryption (page 2-1).

Oracle Data Redaction for Limiting Access to Sensitive Data

Oracle Data Redaction (Data Redaction) gives you the ability to disguise (mask) data
from low-privileged users or applications.

For example, suppose you have the following credit card numbers:
e 5105 1051 0510 5100
e 5111 1111 1111 1118
e 5454 5454 5454 5454

You can use Data Redaction to disguise the first 12 digits as follows:

° *kk*x *xkk *khkkx 5100

° *kk*k K xkkk *k*kx%x 1118

° *kk*x *xkk kkkx 5454

The data is redacted at runtime, that is, it is hidden when the user accesses the page
containing the data, but it is not hidden in the database. This enables the sensitive data
to be processed normally, and it preserves the back-end referential integrity and
constraints for the data. You have the option of redacting the data partially so that
some of the original data is preserved (such as the last 4 digits of a credit card
number), entirely by replacing it with a fixed value, or by replacing the data with an
encrypted value. You also can apply Oracle Data Redaction policies throughout the
databases in your enterprise.

See Introduction to Oracle Data Redaction (page 8-1) for more information.

Deprecated Features

The following feature is deprecated:
* The Use of PKI to Manage Transparent Data Encryption Keys (page xv)

The Use of PKI to Manage Transparent Data Encryption Keys

The use of PKI for managing Transparent Data Encryption keys is deprecated. Instead,
use the ADM NI STER KEY MANAGEMENT SQL statement to manage Transparent Data
Encryption keys.

See Using Transparent Data Encryption with PKI Encryption (page 5-9) for more
information.

Other Changes

Oracle Advanced Security has been repackaged for greater availability. The following
strong authentication features are now no longer part of Oracle Advanced Security
and are provided with the default Oracle Database installation.

e Thin JDBC Client Network support

¢ RADIUS authentication

e Kerberos authentication

® Secure Sockets Layer (SSL) authentication

¢ Multiple authentication support

For detailed information about these features, see Oracle Database Security Guide.
The following features are part of Oracle Advanced Security and are covered in this
guide:

¢ Transparent Data Encryption

e QOracle Data Redaction

As part of this change, this guide has been renamed to Oracle Database Advanced
Security Guide. In previous releases, it was Oracle Database Advanced Security
Administrator’s Guide.

XV

1

Introduction to Oracle Advanced Security

Two features comprise Oracle Advanced Security: Transparent Data Encryption and
Oracle Data Redaction.

Topics:
e Transparent Data Encryption (page 1-1)

¢ Oracle Data Redaction (page 1-1)

1.1 Transparent Data Encryption

Transparent Data Encryption (TDE) enables you to encrypt data so that only an
authorized recipient can read it.

Use encryption to protect sensitive data in a potentially unprotected environment,
such as data you placed on backup media that is sent to an off-site storage location.
You can encrypt individual columns in a database table, or you can encrypt an entire
tablespace.

To use Transparent Data Encryption, you do not need to modify your applications.
TDE enables your applications to continue working seamlessly as before. It
automatically encrypts data when it is written to disk, and then automatically
decrypts the data when your applications access it. Key management is built-in,
eliminating the complex task of managing and securing encryption keys.

1.2 Oracle Data Redaction

Oracle Data Redaction enables you to redact (mask) column data using several
redaction types.

The types of redaction that you can perform are as follows:

® Full redaction. You redact all of the contents of the column data. The redacted
value that is returned to the querying user depends on the data type of the
column. For example, columns of the NUMBER data type are redacted with a zero
(0) and character data types are redacted with a blank space.

¢ Partial redaction. You redact a portion of the column data. For example, you can
redact most of a Social Security number with asterisks (*), except for the last 4
digits.

* Regular expressions. You can use regular expressions in both full and partial
redaction. This enables you to redact data based on a search pattern for the data.
For example, you can use regular expressions to redact specific phone numbers or
email addresses in your data.

Introduction to Oracle Advanced Security 1-1

Oracle Data Redaction

e Random redaction. The redacted data presented to the querying user appears as
randomly generated values each time it is displayed, depending on the data type
of the column.

¢ No redaction. This option enables you to test the internal operation of your
redaction policies, with no effect on the results of queries against tables with
policies defined on them. You can use this option to test the redaction policy
definitions before applying them to a production environment.

Data Redaction performs the redaction at runtime, that is, the moment that the user
tries to view the data. This functionality is ideally suited for dynamic production
systems in which data constantly changes. While the data is being redacted, Oracle
Database is able to process all of the data normally and to preserve the back-end
referential integrity constraints. Data redaction can help you to comply with industry
regulations such as Payment Card Industry Data Security Standard (PCI DSS) and the
Sarbanes-Oxley Act.

1-2 Oracle Database Advanced Security Guide

Part |

Using Transparent Data Encryption

Part I describes how to use Transparent Data Encryption.

Topics:

* Introduction to Transparent Data Encryption (page 2-1)

¢ Configuring Transparent Data Encryption (page 3-1)

* Managing the Keystore and the TDE Master Encryption Key (page 4-1)

¢ General Considerations of Using Transparent Data Encryption (page 5-1)

* Using Transparent Data Encryption with Other Oracle Features (page 6-1)

2

Introduction to Transparent Data
Encryption

Transparent Data Encryption enables you to encrypt data. Typically, you encrypt
sensitive data, such as credit card numbers or Social Security numbers.

Topics:

¢ What Is Transparent Data Encryption? (page 2-1)

* Benefits of Using Transparent Data Encryption (page 2-1)

¢ Who Can Configure Transparent Data Encryption? (page 2-2)

¢ Types and Components of Transparent Data Encryption (page 2-2)

2.1 What Is Transparent Data Encryption?

Transparent Data Encryption (TDE) enables you to encrypt sensitive data that you
store in tables and tablespaces.

After the data is encrypted, this data is transparently decrypted for authorized users
or applications when they access this data. TDE helps protect data stored on media
(also called data at rest) in the event that the storage media or data file is stolen.

Oracle Database uses authentication, authorization, and auditing mechanisms to
secure data in the database, but not in the operating system data files where data is
stored. To protect these data files, Oracle Database provides Transparent Data
Encryption (TDE). TDE encrypts sensitive data stored in data files. To prevent
unauthorized decryption, TDE stores the encryption keys in a security module
external to the database, called a keystore.

You can configure Oracle Key Vault as part of the TDE implementation. This enables
you to centrally manage TDE keystores (called TDE wallets in Oracle Key Vault) in
your enterprise. For example, you can upload a software keystore to Oracle Key Vault
and then make the contents of this keystore available to other TDE-enabled databases.
See Oracle Key Vault Administrator’s Guide for more information.

2.2 Benefits of Using Transparent Data Encryption

Transparent Data Encryption (TDE) ensures that sensitive data is encrypted, meets
compliance, and provides functionality that streamlines encryption operations.

Benefits are as follows:

® As a security administrator, you can be sure that sensitive data is encrypted and
therefore safe in the event that the storage media or data file is stolen.

* Using TDE helps you address security-related regulatory compliance issues.

Introduction to Transparent Data Encryption 2-1

Who Can Configure Transparent Data Encryption?

* You do not need to create auxiliary tables, triggers, or views to decrypt data for
the authorized user or application. Data from tables is transparently decrypted for
the database user and application. An application that processes sensitive data can
use TDE to provide strong data encryption with little or no change to the
application.

¢ Data is transparently decrypted for database users and applications that access
this data. Database users and applications do not need to be aware that the data
they are accessing is stored in encrypted form.

* You can encrypt data with zero downtime on production systems by using online
table redefinition or you can encrypt it offline during maintenance periods. (See
Oracle Database Administrator’s Guide for more information about online table
redefinition.)

* You do not need to modify your applications to handle the encrypted data. The
database manages the data encryption and decryption.

® Oracle Database automates TDE master encryption key and keystore management
operations. The user or application does not need to manage TDE master
encryption keys.

2.3 Who Can Configure Transparent Data Encryption?
You must be granted the ADM NI STER KEY MANAGEMENT system privilege to
configure Transparent Data Encryption (TDE).

If you must open the keystore at the mount stage, then you must be granted the
SYSKMadministrative privilege, which includes the ADM NI STER KEY MANAGEMENT
system privilege and other necessary privileges.

When you grant the SYSKMadministrative privilege to a user, ensure that you create a
password file for it so that the user can connect to the database as SYSKMusing a
password. This enables the user to perform actions such as querying the V6 DATABASE
view.

To configure TDE column or tablespace encryption, you do not need the SYSKMor
ADM NI STER KEY MANAGEMENT privileges. You must have the following additional
privileges to create TDE policies on tables and tablespaces:

e CREATE TABLE
e ALTER TABLE
e CREATE TABLESPACE

2.4 Types and Components of Transparent Data Encryption

Transparent Data Encryption can be applied to individual columns or entire
tablespaces.

Topics:
e About Transparent Data Encryption Types and Components (page 2-3)

* How Transparent Data Encryption Column Encryption Works (page 2-3)

e How Transparent Data Encryption Tablespace Encryption Works (page 2-4)

2-2 Oracle Database Advanced Security Guide

Types and Components of Transparent Data Encryption

* How the Keystore for the Storage of TDE Master Encryption Keys Works
(page 2-5)

* Supported Encryption and Integrity Algorithms (page 2-7)

2.4.1 About Transparent Data Encryption Types and Components

You can encrypt sensitive data at the column level or the tablespace level.

At the column level, you can encrypt data using selected table columns. TDE
tablespace encryption enables you to encrypt all of the data that is stored in a
tablespace.

Both TDE column encryption and TDE tablespace encryption use a two-tiered key-
based architecture. Unauthorized users, such as intruders who are attempting security
attacks, cannot read the data from storage and back up media unless they have the
TDE master encryption key to decrypt it.

2.4.2 How Transparent Data Encryption Column Encryption Works

Transparent Data Encryption (TDE) column encryption protects confidential data,
such as credit card and Social Security numbers, that is stored in table columns.

TDE column encryption uses the two-tiered key-based architecture to transparently
encrypt and decrypt sensitive table columns. The TDE master encryption key is stored
in an external security module, which can be an Oracle software keystore or hardware
keystore. This TDE master encryption key encrypts and decrypts the TDE table key,
which in turn encrypts and decrypts data in the table column.

Figure 2-1 (page 2-3) an overview of the TDE column encryption process.

Figure 2-1 TDE Column Encryption Overview

Oracle Database

' Encrypt/Decrypt h h
TDE Master ‘l

Encryption Key TDE Table Eggm/
Keys

External Security
Module e
(Software/Hardware ata Dictionary
Keystore)

Credit Card

S.No Name No.

1. | SCOTT | #1&*1%@)$(
2. JOHN | %8 @!)$(

3. MARY |@!@*"1$%)#&

As shown in Figure 2-1 (page 2-3), the TDE master encryption key is stored in an
external security module that is outside of the database and accessible only to a user
who was granted the appropriate privileges. For this external security module, Oracle
Database uses an Oracle software keystore (wallet, in previous releases) or hardware
security module (HSM) keystore. Storing the TDE master encryption key in this way
prevents its unauthorized use.

Introduction to Transparent Data Encryption 2-3

Types and Components of Transparent Data Encryption

Using an external security module separates ordinary program functions from
encryption operations, making it possible to assign separate, distinct duties to
database administrators and security administrators. Security is enhanced because the
keystore password can be unknown to the database administrator, requiring the
security administrator to provide the password.

When a table contains encrypted columns, TDE uses a single TDE table key regardless
of the number of encrypted columns. Each TDE table key is individually encrypted
with the TDE master encryption key. All of the TDE table keys are located together in
the col kI ¢ column of the ENC$ data dictionary table. No keys are stored in plaintext.

2.4.3 How Transparent Data Encryption Tablespace Encryption Works

Transparent Data Encryption (TDE) tablespace encryption enables you to encrypt an
entire tablespace.

All of the objects that are created in the encrypted tablespace are automatically
encrypted. TDE tablespace encryption is useful if your tables contain sensitive data in
multiple columns, or if you want to protect the entire table and not just individual
columns. You do not need to perform a granular analysis of each table column to
determine the columns that need encryption.

In addition, TDE tablespace encryption takes advantage of bulk encryption and
caching to provide enhanced performance. The actual performance impact on
applications can vary.

TDE tablespace encryption encrypts all of the data stored in an encrypted tablespace
including its redo data. TDE tablespace encryption does not encrypt data that is stored
outside of the tablespace. For example, BFI LE data is not encrypted because it is
stored outside the database. If you create a table with a BFI LE column in an encrypted
tablespace, then this particular column will not be encrypted.

All of the data in an encrypted tablespace is stored in encrypted format on the disk.
Data is transparently decrypted for an authorized user having the necessary privileges
to view or modify the data. A database user or application does not need to know if
the data in a particular table is encrypted on the disk. In the event that the data files on
a disk or backup media is stolen, the data is not compromised.

TDE tablespace encryption uses the two-tiered, key-based architecture to
transparently encrypt (and decrypt) tablespaces. The TDE master encryption key is
stored in an external security module (software or hardware keystore). This TDE
master encryption key is used to encrypt the TDE tablespace encryption key, which in
turn is used to encrypt and decrypt data in the tablespace.

Figure 2-2 (page 2-5) shows an overview of the TDE tablespace encryption process.

2-4 Oracle Database Advanced Security Guide

Types and Components of Transparent Data Encryption

Figure 2-2 TDE Tablespace Encryption

TDE Tablespace Encryption

\ommjat’ase/

Encrypt/
Decrypt '
TDE Tablespace
h Encryption Key
TDE Master L oo || e || e
Encrypted Data Files
Exterhr;lzl i«la:uri!y Tablespace
(Software/Hardware Encrypt/
Keystore) Decrypt
TDE Tablespace
Encryption Key

|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
| Encryption Key
|
1
|
|
1
|
|
1
|
|
1
|
|
1
I
|
1
|
|
|

Note:

The encrypted data is protected during operations such as JO Nand SORT.
This means that the data is safe when it is moved to temporary tablespaces.
Data in undo and redo logs is also protected.

TDE tablespace encryption also allows index range scans on data in encrypted
tablespaces. This is not possible with TDE column encryption.

Oracle Database implements the following features to TDE tablespace encryption:

¢ Ituses aunified TDE master encryption key for both TDE column encryption and
TDE tablespace encryption.

* You can reset the unified TDE master encryption key. This provides enhanced
security and helps meet security and compliance requirements.

2.4.4 How the Keystore for the Storage of TDE Master Encryption Keys Works
To control the encryption, you use a keystore and TDE master encryption key.
Topics:
* About the Keystore Storage of TDE Master Encryption Keys (page 2-5)
e Benefits of the Keystore Storage Framework (page 2-6)
e Types of Keystores (page 2-6)
2.4.4.1 About the Keystore Storage of TDE Master Encryption Keys

Oracle Database provides a key management framework for Transparent Data
Encryption that stores and manages keys and credentials.

Introduction to Transparent Data Encryption 2-5

Types and Components of Transparent Data Encryption

The key management framework includes the keystore to securely store the TDE
master encryption keys and the management framework to securely and efficiently
manage keystore and key operations for various database components.

The Oracle keystore stores a history of retired TDE master encryption keys, which
enables you to change them and still be able to decrypt data that was encrypted under
an earlier TDE master encryption key.

2.4.4.2 Benefits of the Keystore Storage Framework

The key management framework provides several benefits for Transparent Data
Encryption.

¢ Enables separation of duty between the database administrator and the security
administrator who manages the keys. You can grant the ADM NI STER KEY
MANAGEMENT or SYSKMprivilege to users who are responsible for managing the
keystore and key operations.

e Facilitates compliance, because it helps you to track encryption keys and
implement requirements such as keystore password rotation and TDE master
encryption key reset or rekey operations.

¢ Facilitates and helps enforce keystore backup requirements. A backup is a copy of
the password-based software keystore that is created for all of the critical keystore
operations.

You must make a backup of the keystore for all of the critical keystore operations.
You must also make a backup of the TDE master encryption key before you reset
or rekey this TDE master encryption key.

* Enables the keystore to be stored on an ASM file system. This is particularly
useful for Oracle Real Application Clusters (Oracle RAC) environments where
database instances share a unified file system view.

¢ Enables reverse migration from a Hardware Security Module (HSM) keystore to a
file system-based software keystore. This option is useful if you must migrate
back to a software keystore.

2.4.4.3 Types of Keystores
Oracle Database supports software keystores and hardware (HSM-based) keystores.

You can configure the following types of software keystores:

* Password-based software keystores: Password-based software keystores are
protected by using a password that you create. You must open this type of
keystore before the keys can be retrieved or used.

* Auto-login software keystores: Auto-login software keystores are protected by a
system-generated password, and do not need to be explicitly opened by a security
administrator. Auto-login software keystores are automatically opened when
accessed. Auto-login software keystores can be used across different systems. If
your environment does not require the extra security provided by a keystore that
must be explicitly opened for use, then you can use an auto-login software
keystore. Auto-login software keystores are ideal for unattended scenarios.

* Local auto-login software keystores: Local auto-login software keystores are
auto-login software keystores that are local to the computer on which they are
created. Local auto-login keystores cannot be opened on any computer other than
the one on which they are created. This type of keystore is typically used for

2-6 Oracle Database Advanced Security Guide

Types and Components of Transparent Data Encryption

scenarios where additional security is required (that is, to limit the use of the auto-
login for that computer) while supporting an unattended operation.

Software keystores can be stored on ASM disk groups or in a regular file system.

Hardware Security Modules are physical devices that provide secure storage for
encryption keys, in hardware keystores. HSMs also provide secure computational
space (memory) to perform encryption and decryption operations.

When using an HSM, all encryption and decryption operations that use the TDE
master encryption key are performed inside the HSM. This means that the TDE master
encryption key is never exposed in insecure memory.

2.4.5 Supported Encryption and Integrity Algorithms

By default, Transparent Data Encryption (TDE) Column encryption uses the
Advanced Encryption Standard with a 192-bit length cipher key (AES192).

In addition, salt is added by default to plaintext before encryption unless specified
otherwise. You cannot add salt to indexed columns that you want to encrypt. For
indexed columns, choose the NO SALT parameter for the SQL ENCRYPT clause.

For Transparent Data Encryption (TDE) Tablespace encryption, the default is to use
the Advanced Encryption Standard with a 128-bit length cipher key (AES128). In
addition, salt is always added to plaintext before encryption.

You can change encryption algorithms and encryption keys on existing encrypted
columns by setting a different algorithm with the SQL ENCRYPT clause.

Table 2-1 (page 2-7) lists the supported encryption algorithms.

Table 2-1 Supported Encryption Algorithms for Transparent Data Encryption

Algorithm Key Size Parameter Name

Triple Encryption Standard (DES) 168 bits 3DES168

Advanced Encryption Standard (AES) 128 bits AES128

AES e Default for e AES192 for
column level column level
encryption is encryption
192 bits e AES128 for

e Default for tablespace

tablespace encryption
encryption is
128 bits

AES 256 bits AES256

For integrity protection of TDE column encryption, the SHA- 1 hashing algorithm is
used. If you have storage restrictions, then use the NOVAC option.

Introduction to Transparent Data Encryption 2-7

Types and Components of Transparent Data Encryption

See Also:

* Creating a Table with an Encrypted Column Using No Algorithm or a
Non-Default Algorithm (page 3-20) for the correct syntax when choosing
the NO SALT parameter for the SQL ENCRYPT clause

¢ Using the NOMAC Parameter to Save Disk Space and Improve
Performance (page 3-20) for more information about the NOVAC option in
the CREATE TABLE statement

* Changing the Encryption Key or Algorithm for Tables with Encrypted
Columns (page 3-24) for syntax examples when setting a different
algorithm with the SQL ENCRYPT clause

2-8 Oracle Database Advanced Security Guide

3

Configuring Transparent Data Encryption

You can configure software or hardware keystores, for use on both individual table
columns or entire tablespaces.

Topics:

¢ Configuring a Software Keystore (page 3-1)

* Configuring a Hardware Keystore (page 3-10)

* Encrypting Columns in Tables (page 3-16)

¢ Encrypting Tablespaces (page 3-25)

e Transparent Data Encryption Data Dynamic and Data Dictionary Views

(page 3-29)

3.1 Configuring a Software Keystore

A software keystore is a container for the TDE master encryption key, and it resides in
the software file system.

Topics:

¢ About Configuring a Software Keystore (page 3-1)

¢ Step 1: Set the Software Keystore Location in the sqlnet.ora File (page 3-2)
* Step 2: Create the Software Keystore (page 3-4)

¢ Step 3: Open the Software Keystore (page 3-7)

* Step 4: Set the Software TDE Master Encryption Key (page 3-8)

¢ Step 5: Encrypt Your Data (page 3-10)

3.1.1 About Configuring a Software Keystore

A software keystore is a container that stores the Transparent Data Encryption master
encryption key.

Before you can configure the keystore, you first must define a location for it in the
sql net . or a file. There is one keystore per database, and the database locates this
keystore by checking the keystore location that you define in the sqgl net . or a file.
You can create other keystores, such as copies of the keystore and export files that
contain keys, depending on your needs. However, you must never remove or delete
the keystore that you configured in the sql net . or a location, nor replace it with a
different keystore.

Configuring Transparent Data Encryption 3-1

Configuring a Software Keystore

After you configure the software keystore location in the sql net . or a file, you can
log in to the database instance to create and open the keystore, and then set the TDE
master encryption key. After you complete these steps, you can begin to encrypt data.

3.1.2 Step 1: Set the Software Keystore Location in the sqlnet.ora File

The first step you must take to configure a software keystore is to designate a location
for it in the sqgl net . or a file.

Topics:

* About the Keystore Location in the sqlnet.ora File (page 3-2)

¢ Configuring the sqlnet.ora File for a Software Keystore Location (page 3-3)

e Example: Configuring a Software Keystore for a Regular File System (page 3-3)

¢ Example: Configuring a Software Keystore When Multiple Databases Share the
sqlnet.ora File (page 3-3)

¢ Example: Configuring a Software Keystore for Oracle Automatic Storage
Management (page 3-4)

¢ Example: Configuring a Software Keystore for an Oracle Automatic Storage
Management Disk Group (page 3-4)

3.1.2.1 About the Keystore Location in the sqinet.ora File

Oracle Database checks the sql net . or a file for the directory location of the keystore,
whether it is a software keystore, a hardware module security (HSM) keystore, or an
Oracle Key Vault keystore.

You must edit the sgl net . or a file to define a directory location for the keystore that
you plan to create. Ensure that this directory exists beforehand. Preferably, this
directory should be empty.

Note the following behavior when you must edit the sql net . or a file in an Oracle
Real Application Clusters (Oracle RAC) or a multitenant environment:

¢ Inan Oracle RAC environment: If you are using the srvct | utility and if you
want to include environment variables in the sql net . or a configuration file,
then you must set these environment variables in both the operating system and
the srvct| environment. Oracle recommends that you place the keystore on a
shared file system, such as Oracle Automatic Storage Management (ASM) or NFS.

¢ In a multitenant environment: The keystore location is set for the entire
multitenant container database (CDB), not for individual pluggable databases
(PDBs).

In the sql net . or a file, you must set the ENCRYPTI ON_WALLET_LCOCATI ON
parameter to specify the keystore location. When determining which keystore to use,
Oracle Database searches for the keystore location in the following places, in this
order:

1. It attempts to use the keystore in the location specified by the parameter
ENCRYPTI ON_WALLET_LOCATI ONin the sql net . or a file.

2. If the ENCRYPTI ON_WALLET_LOCATI ON parameter is not set, then it attempts to
use the keystore in the location that is specified by the parameter
WALLET_LOCATI ON.

3-2 Oracle Database Advanced Security Guide

Configuring a Software Keystore

3. If the WALLET_LOCATI ON parameter is also not set, then Oracle Database looks
for a keystore at the default database location, which is ORACLE_BASE/ adni n/
DB_UNI QUE_NAME/ wal | et or ORACLE_HOVE/ admi n/ DB_UNI QUE_NAME/
wal | et . (DB_UNI QUE_NAME is the unique name of the database specified in the
initialization parameter file.) When the keystore location is not set in the
sql net. or a file, then the VBENCRYPTI ON_WALLET view displays the default
location. You can check the location and status of the keystore in the V
$ENCRYPTI ON_WALLET view.

By default, the sql net . or a file is located in the ORACLE_HQVEdbs directory or in
the location set by the TNS_ADM N environment variable. Ensure that you have
properly set the TNS_ADM Nenvironment variable to point to the correct

sql net . or a file.

See Also: SQL*Plus User’s Guide and Reference for more information and
examples of setting the TNS_ADM N environment variable

3.1.2.2 Configuring the sqinet.ora File for a Software Keystore Location

Use the sqgl net . or a file to configure the keystore location for a regular file system,
for multiple database access, and for use with Oracle Automatic Storage Management
(ASM).

* To create a software keystore on a regular file system, use the following format
when you edit the sqgl net . or a file:

ENCRYPTI ON_WALLET _LOCATI ON=
(SOURCE=
(METHOD=FI LE)
(METHOD_DATA=
(DI RECTORY=pat h_t o_keystore)))

If the pat h_t o_keyst or e will contain an environment variable, then set this variable
in the environment where the database instance is started and before you start the
database. If you are using the srvct | utility to start the database, then set the
environment variable in the srvct | environment as well, using the following
command:

srvctl setenv database -db database_name -env

"envi ronment _vari abl e_nanme=envi ronment _vari abl e_val ue"

3.1.2.3 Example: Configuring a Software Keystore for a Regular File System
You can configure a software keystore for a regular file system.

The following example shows how to configure a software keystore location in the
sql net . or a file for a regular file system in which the database name is or cl .

ENCRYPTI ON_WALLET_LOCATI ON=
(SOURCE=
(NETHCD=FI LE)
(METHOD_DATA=
(DI RECTORY=/ et ¢/ ORACLE/ WALLETS/ orcl)))

3.1.2.4 Example: Configuring a Software Keystore When Multiple Databases Share
the sqlnet.ora File

You can configure multiple databases to share the sqgl net . or a file.

Configuring Transparent Data Encryption 3-3

Configuring a Software Keystore

The following example shows how to configure a software keystore location when
multiple databases share the sql net . or a file.

ENCRYPTI ON_WALLET _LOCATI ON=
(SOURCE=
(NETHOD=FI LE)
(METHOD_DATA=
(Dl RECTORY=/ et ¢/ ORACLE/ WALLETS/ $ORACLE_SI D)))

3.1.2.5 Example: Configuring a Software Keystore for Oracle Automatic Storage
Management

You can configure sql net . or a for an Automatic Storage Management (ASM) file
system

The following example shows how to configure a software keystore location in the
sgl net . or a file for an ASM file system:

ENCRYPTI ON_WALLET_LOCATI ON=
(SOURCE=
(METHCD=FI LE)
(METHOD_DATA=
(DI RECTORY=+di sk1/ nydb/ wal | et)))

3.1.2.6 Example: Configuring a Software Keystore for an Oracle Automatic Storage
Management Disk Group

You can configure sql net . or a for an Oracle Automatic Storage Management (ASM)
disk group.

The following format shows how to configure a software keystore if you want to
create a software keystore location on an ASM disk group:

ENCRYPTI ON_WALLET_LOCATI ON=
(SOURCE=
(METHCD=FI LE)
(METHOD_DATA=
(DI RECTORY=+ASM fi | e_path_of _t he_di skgroup)))
3.1.3 Step 2: Create the Software Keystore

After you have specified a directory location for the software keystore, you can create
the keystore.

Topics:

¢ About Creating Software Keystores (page 3-4)

e Creating a Password-Based Software Keystore (page 3-5)

* Creating an Auto-Login or a Local Auto-Login Software Keystore (page 3-6)
3.1.3.1 About Creating Software Keystores

There are three different types of software keystores.

You can create password-based software keystores, auto-login software keystores, and
local auto-login software keystores.

Be aware that executing the query SELECT * FROM VSENCRYPTI ON_WALLET will
automatically open an auto-login software keystore. For example, suppose you have a
password-based keystore and an auto-login keystore. If the password-based keystore

3-4 Oracle Database Advanced Security Guide

Configuring a Software Keystore

is open and you close the password-based keystore and then query the V

$SENCRYPTI ON_WALLET view, then the output will indicate that a keystore is open.
However, this is because VSENCRYPTI ON_WALLET opened up the auto-login software
keystore and then displayed the status of the auto-login keystore.

See Also:

Types of Keystores (page 2-6) for more information about software keystores

3.1.3.2 Creating a Password-Based Software Keystore

A password-based software keystore requires a user password, which is used to
protect the keys and credentials stored in the keystore.

1.

Ensure that you complete the procedure described in Step 1: Set the Software
Keystore Location in the sqlnet.ora File (page 3-2).

Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root. For example:

sql pl us c##sec_admin as syskm
Enter password: password
Connect ed.

If SQL*Plus is already open and you had modified the sql net . or a file during
this time, then reconnect to SQL*Plus. The database session must be changed
before the sgl net . or a changes can take effect.

Run the ADM NI STER KEY NMANAGEMENT SQL statement to create the keystore.
The syntax is as follows:

ADM NI STER KEY MANAGEMENT CREATE KEYSTORE ' keystore_| ocation' |DENTIFIED BY
sof t war e_keyst ore_passwor d;

In this specification:

e Kkeystore_l ocati on is the path to the keystore directory location of the
password-based keystore for which you want to create the auto-login
keystore (for example, / et ¢/ ORACLE/ WALLETS/ or cl). Enclose the
keyst or e_| ocat i on setting in single quotation marks ('). To find this
location, you can query the WRL_ PARAMETER column of the V
$ENCRYPTI ON_WALLET view. (If the keystore was not created in the default
location, then the STATUS column of the VEENCRYPTI ON_WALLET view is
NOT_AVAI LABLE.)

e sof tware_keystore_password is the password of the keystore that you,
the security administrator, creates.

For example, to create the keystore in the / et ¢/ ORACLE/ WALLETS/ or cl
directory:

ADM NI STER KEY MANAGEMENT CREATE KEYSTORE '/ et c/ ORACLE/ WALLETS/ orcl*
| DENTI FI ED BY passwor d;

keystore altered.

Configuring Transparent Data Encryption 3-5

Configuring a Software Keystore

After you run this statement, the ewal | et . p12 file, which is the keystore,
appears in the keystore location.

3.1.3.3 Creating an Auto-Login or a Local Auto-Login Software Keystore

As an alternative to password-based keystores, you can create either an auto-login or
local auto-login software keystore.

Both of these keystores have system-generated passwords. They are also PKCS#12-
based files. The auto-login software keystore can be opened from different computers
from the computer where this keystore resides, but the local auto-login software
keystore can only be opened from the computer on which it was created. Both the
auto-login and local auto-login keystores are created from the password-based
software keystores.

1.

Ensure that you complete the procedure described in Step 1: Set the Software
Keystore Location in the sqlnet.ora File (page 3-2).

Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root. For example:

sql pl us c##sec_admi n as syskm
Enter password: password
Connect ed.

If SQL*Plus is already open and you had modified the sqgl net . or a file during
this time, then reconnect to SQL*Plus. The database session must be changed
before the sqgl net . or a changes can take effect.

Create a password-based software keystore, as described in Creating a Password-
Based Software Keystore (page 3-5).

Run the ADM NI STER KEY MANAGEMENT SQL statement to create the keystore.
The syntax is as follows:

ADM NI STER KEY MANAGEMENT CREATE [LOCAL] AUTO LOG N KEYSTORE FROM KEYSTORE
"keystore_location' |DENTIFIED BY software_keystore_password,;

In this specification:

* LOCAL enables you to create a local auto-login software keystore. Otherwise,
omit this clause if you want the keystore to be accessible by other computers.

e Kkeystore_| ocati on is the path to the directory location of the password-
based keystore for which you want to create the auto-login keystore (for
example, / et ¢/ ORACLE/ WALLETS/ or cl). Enclose this setting in single
quotation marks ('). To find this location, query the WRL_ PARAVETER
column of the VSENCRYPTI ON_WALLET view.

e sof tware_keyst ore_passwor d is the password-based keystore for which
you want to create the auto-login keystore.

For example, to create an auto-login software keystore of the password-based
keystore that is located in the/ et ¢/ ORACLE/ WALLETS/ or ¢l directory:

ADM NI STER KEY MANAGEMENT CREATE AUTO LOG N KEYSTORE FROM KEYSTORE ' /et c/
ORACLE/ WALLETS/ orcl ' | DENTI FI ED BY password;

3-6 Oracle Database Advanced Security Guide

Configuring a Software Keystore

keystore altered.

After you run this statement, the cwal | et . sso file appears in the keystore
location. The ewal | et . p12 file is the password-based wallet.

Note:

Do not remove the PKCS#12 wallet (ewal | et . p12 file) after you create the
auto login keystore (. sso file). You must have the PKCS#12 wallet to
regenerate or rekey the TDE master encryption key in the future. By default,
this file is located in the $ORACLE_HOVE/ admi n/ ORACLE_SI D/ wal | et
directory.

Transparent Data Encryption uses an auto login keystore only if it is available at the
correct location (ENCRYPTI ON_WALLET_LOCATI ON, WALLET_LQOCATI ON, or the
default keystore location), and the SQL statement to open an encrypted keystore has
not already been executed. (Note that auto-login keystores are encrypted, because they
have system-generated passwords.)

See Also:

Deletion of Keystores (page 4-21)

3.1.4 Step 3: Open the Software Keystore

Depending on the type of keystore you create, you must manually open the keystore
before you can use it.

Topics:
* About Opening Software Keystores (page 3-7)

¢ Opening a Software Keystore (page 3-8)

3.1.4.1 About Opening Software Keystores

You must manually open a password-based software keystore before any TDE master
encryption keys can be created or accessed in the keystore.

You do not need to manually open auto-login or local auto-login software keystores.
These keystore are automatically opened when it is required, that is, when an
encryption operation must access the key. If necessary, you can explicitly close any of
these types of keystores. You can check the status of whether a keystore is open,
closed, open but with no master key, or open but with an unknown master key by
querying the STATUS column of the VSENCRYPTI ON_WALLET view.

After you open a keystore, it remains open until you manually close it. Each time you
restart a database instance, you must manually open the password keystore to
reenable encryption and decryption operations.

Configuring Transparent Data Encryption 3-7

Configuring a Software Keystore

See Also:

How Keystore Open and Close Operations Work in a Multitenant
Environment (page 6-14)

3.1.4.2 Opening a Software Keystore

To open a software keystore, you must use the ADM NI STER KEY MANAGEMENT
statement with the SET KEYSTORE OPENclause.

1. Ensure that you complete the procedure described in Step 2: Create the Software
Keystore (page 3-4).

2. Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, you must open the keystore first in the root before
you can open it in a PDB. For example, to log in to the root:

sql pl us c##sec_adm n as syskm
Enter password: password
Connect ed.

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the
current PDB, run the show con_nanme command.

3. Run the ADM NI STER KEY MANAGEMENT statement.

Use the following syntax:

ADM NI STER KEY MANAGEMENT SET KEYSTORE OPEN | DENTI FI ED BY
sof tware_keyst ore_password [CONTAINER = ALL | CURRENT];

In this specification:

e software_keystore_password is the same password that you used to
create the keystore in Step 2: Create the Software Keystore (page 3-4).

e CONTAI NERis for use in a multitenant environment. Enter ALL to set the
keystore in all of the PDBs in this CDB, or CURRENT for the current PDB.

For example:

ADM NI STER KEY MANAGEMENT SET KEYSTORE OPEN | DENTI FI ED BY password;

keystore altered.

Note that if the keystore is open but you have not created a TDE master encryption
key yet (described next), the STATUS column of the VEENCRYPTI ON_WALLET view
reminds you with an OPEN_NO_MASTER_KEY status.

3.1.5 Step 4: Set the Software TDE Master Encryption Key
Once the keystore is open, you can set a TDE master encryption key for it.
Topics:
e About Setting the Software TDE Master Encryption Key (page 3-9)

¢ Setting the TDE Master Encryption Key in the Software Keystore (page 3-9)

3-8 Oracle Database Advanced Security Guide

Configuring a Software Keystore

3.1.5.1 About Setting the Software TDE Master Encryption Key
The TDE master encryption key is stored in the keystore.

This key protects the TDE table keys and tablespace encryption keys. By default, the
TDE master encryption key is a key that Transparent Data Encryption (TDE)
generates. You can find if a keystore has no master key set or an unknown master key
by querying the STATUS column of the VSENCRYPTI ON_WALLET view.

In a multitenant environment, you can create and manage the TDE master encryption
key from either the root or the PDB.

Note:

You can create TDE master encryption keys for use later on, and then
manually activate them. See Creating TDE Master Encryption Keys for Later
Use (page 4-22) for more information.

3.1.5.2 Setting the TDE Master Encryption Key in the Software Keystore

To set the TDE master encryption key in a software keystore, use the ADM NI STER
KEY NMANAGEMENT statement with the SET KEY clause.

1. For password software keystores, ensure that you complete the procedure
described in Step 3: Open the Software Keystore (page 3-7) to open the key.

Auto-login or local auto-login software keys are opened automatically after you
create them. Password-based software keystores must be open before you can set
the TDE master encryption key. If the auto-login software keystore is open, then
you must close it and open the password-based software keystore. If both the
password-based keystore and auto-login keystores are present in the configured
location and the password-based keystore is open, then the TDE master
encryption key is automatically written to the auto-login keystore as well.

2. Login to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root or to the PDB. For example, to log
in to a PDB:

sql pl us sec_adm n@rpdb as syskm
Enter password: password
Connect ed.

To find the available PDBs, query the DBA_PDBS data dictionary view. To check
the current PDB, run the show con_nane command.

3. Ensure that the database is open in READ WRI TE mode.

You can set the TDE master encryption key if OPEN_MCDE is set to READ WRI TE.
To find the status, for a non-multitenant environment, query the OPEN_MODE
column of the VEDATABASE dynamic view. If you are using a multitenant
environment, then query the V$PDBS view. (If you cannot access these views, then
connect as SYSDBA and try the query again. In order to connect as SYSKMfor this
type of query, you must create a password file for it. See Oracle Database
Administrator’s Guide for more information.)

Configuring Transparent Data Encryption 3-9

Configuring a Hardware Keystore

Connect using the SYSKMadministrative privilege and then run the ADM NI STER
KEY MANAGEMENT SQL statement to set the software management keystore.

ADM NI STER KEY MANAGEMENT SET KEY [USING TAG 'tag'] |DENTIFIED BY
keyst ore_password [W TH BACKUP [USI NG ' backup_identifier']] [CONTAINER = ALL |
CURRENT] ;

In this specification:

e tag is the associated attributes and information that you define. Enclose this
setting in single quotation marks (').

¢ passwor d is the mandatory keystore password that you created when you
created the keystore in Step 2: Create the Software Keystore (page 3-4).

e W TH BACKUP creates a backup of the keystore. You must use this option for
password-based keystores. Optionally, you can use the USI NGclause to add a
brief description of the backup. Enclose this description in single quotation
marks (''). This identifier is appended to the named keystore file (for
example, ewal | et _ti me_st anp_enp_key_backup. p12, with
enmp_key_backup being the backup identifier). Follow the file naming
conventions that your operating system uses.

e CONTAI NERis for use in a multitenant environment. Enter ALL to set the key
in all of the PDBs in this CDB, or CURRENT for the current PDB.

For example:

ADM NI STER KEY MANAGEMENT SET KEY | DENTI FI ED BY keystore_password W TH BACKUP
USI NG ' enp_key_backup';

keystore altered.

3.1.6 Step 5: Encrypt Your Data

After you complete the software keystore configuration, you can begin to encrypt
data.

You can encrypt data in individual table columns or in entire tablespaces.

See the following topics for information about encrypting data:
— Encrypting Columns in Tables (page 3-16)

— Encrypting Tablespaces (page 3-25)

3.2 Configuring a Hardware Keystore

A hardware keystore resides in a hardware security module (HSM), which is designed
to store encryption keys.

Topics:

About Configuring a Hardware (External) Keystore (page 3-11)
Step 1: Set the Hardware Keystore Type in the sqlnet.ora File (page 3-11)
Step 2: Configure the Hardware Security Module (page 3-11)

Step 3: Open the Hardware Keystore (page 3-12)

3-10 Oracle Database Advanced Security Guide

Configuring a Hardware Keystore

¢ Step 4: Set the Hardware Keystore TDE Master Encryption Key (page 3-14)

e Step 5: Encrypt Your Data (page 3-16)

3.2.1 About Configuring a Hardware (External) Keystore

A hardware keystore is a separate server or device that provides security storage for
encryption keys.

External keystores are external to an Oracle database. Oracle Database can interface
with external keystores but cannot manipulate them outside of the Oracle interface.
The Oracle database can request the external keystore to create a key but it cannot
define how this key is stored in an external database. (Conversely, for software
keystores that are created using TDE, Oracle Database has full control: that is, you can
use SQL statements to manipulate this type of keystore.) Examples of external
keystores are hardware security modules or Oracle Key Vault keystores. External
keystores among multiple databases can be managed centrally, such as with Oracle
Key Vault.

To configure a keystore for a hardware security module (hardware keystore), you
must first include the keystore type in the sgl net . or a file, configure and open the
hardware keystore, and then set the hardware keystore TDE master encryption key. In
short, there is one hardware keystore per database, and the database locates this
keystore by checking the keystore type that you define in the sql net . or a file.

After you configure the hardware keystore, you are ready to begin encrypting your
data.

3.2.2 Step 1: Set the Hardware Keystore Type in the sqginet.ora File
Before you can configure a hardware keystore, you must modify the sgl net . or a file.
By default, this file is located in the ORACLE_HOMEdbs directory or in the location set
by the TNS_ADM N environment variable.
* Use the following setting in the sqgl net . or a file to define the hardware keystore
type, which is HSM

ENCRYPTI ON_WALLET_LOCATI ON=
(SOURCE=
(METHOD=HSM))

See Also:

e About the Keystore Location in the sqlnet.ora File (page 3-2) for more
information about how Oracle Database finds the keystore location

* Migrating Between a Software Password Keystore and a Hardware
Keystore (page 4-11) for information about how to configure the
sql net . or a file for migration between these two keystore types

3.2.3 Step 2: Configure the Hardware Security Module

To configure a third-party hardware security module, you must copy the PKCS#11
library to the correct location and follow your vendor's instructions.

Configuring Transparent Data Encryption 3-11

Configuring a Hardware Keystore

1. Ensure that you complete the procedure described in Step 1: Set the Hardware
Keystore Type in the sqlnet.ora File (page 3-11).

2. Copy the PKCS#11 library to its correct path.

Your hardware security module vendor should provide you with an associated
PKCS#11 library. Only one PKCS#11 library is supported at a time. If you want to
use an HSM from a new vendor, then you must replace the PKCS#11 library from
the earlier vendor with the library from the new vendor.

Copy this library to the appropriate location to ensure that Oracle Database can
find this library:

* UNIX systems: Use the following syntax to copy the library to this directory:
/opt/oracl e/ extapi/[32,64]/hsm { VENDOR}/{ VERSI ON}/ | i bapi name. so

* Windows systems: Use the following syntax to copy the library to this
directory:

Y%SYSTEM DRI VE% or acl e\ ext api \ [32, 64] \ hsm { VENDOR}\ { VERSI ON}\ | i bapi nane. dI |

In this specification:
e [32, 64] specifies whether the supplied binary is 32 bits or 64 bits.
* VENDCRstands for the name of the vendor supplying the library

* VERSI ONrefers to the version of the library. This should preferably be in the
format, nunber . nunber . nunber

* api name requires no special format. However, the api name must be
prefixed with the word | i b, as illustrated in the syntax.

3. Follow your vendor's instructions to set up the hardware security module.

Use your hardware security module management interface and the instructions
provided by your HSM vendor to set up the hardware security module. Create
the user account and password that must be used by the database to interact with
the hardware security module. This process creates and configures a hardware
keystore that communicates with your Oracle database.

3.2.4 Step 3: Open the Hardware Keystore

After you have configured the hardware security module, you must open the
hardware keystore before it can be used.

Topics:
e About Opening the Hardware Keystore (page 3-12)
* Opening the Hardware Keystore (page 3-13)

3.2.4.1 About Opening the Hardware Keystore

You must open the hardware keystore so that it is accessible to the database before
you can perform any encryption or decryption.

You can check the status of whether a keystore is open, closed, open but with no TDE
master encryption key, or open but with an unknown master encryption key by
querying the STATUS column of the VEENCRYPTI ON_WALLET view.

3-12 Oracle Database Advanced Security Guide

Configuring a Hardware Keystore

See Also:

How Keystore Open and Close Operations Work in a Multitenant
Environment (page 6-14)

3.2.4.2 Opening the Hardware Keystore

To open a hardware keystore, use the ADM NI STER KEY MANAGEMENT statement
with the SET KEYSTORE OPENclause.

1.

Ensure that you complete the procedure described in Step 2: Configure the
Hardware Security Module (page 3-11).

Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, you must open the keystore first in the root before
you can open it in a PDB. For example, to log in to the root:

sql plus sec_admn as syskm
Enter password: password
Connect ed.

To find the available PDBs, query the DBA_PDBS data dictionary view. To check
the current PDB, run the show con_nane command.

If SQL*Plus is already open and you had modified the sql net . or a file during
this time, then reconnect to SQL*Plus. The database session must be changed
before the sgl net . or a changes can take effect.

Run the ADM NI STER KEY NMANAGEMENT SQL statement using the following
syntax:

ADM NI STER KEY MANAGEMENT SET KEYSTORE OPEN | DENTI FI ED BY "user i d: passwor d"
[CONTAI NER = ALL | CURRENT];

In this specification:

e user_i dis the user ID created for the database using the HSM management
interface

¢ passwor d is the password created for the user ID using the HSM
management interface.

Enclose the user _i d: passwor d string in double quotation marks (" ") and
separate user _i d and passwor d with a colon (:).

e CONTAI NERIis for use in a multitenant environment. Enter ALL to set the
keystore in all of the PDBs in this CDB, or CURRENT for the current PDB.

For example:

ADM NI STER KEY MANAGEMENT SET KEYSTORE OPEN | DENTI FI ED BY "psnith: password";
keystore altered.

Repeat this procedure each time you restart the database instance.

Configuring Transparent Data Encryption 3-13

Configuring a Hardware Keystore

3.2.5 Step 4: Set the Hardware Keystore TDE Master Encryption Key

After you have opened the hardware keystore, you are ready to set the hardware
keystore TDE master encryption key.

Topics:
* About Setting the Hardware Keystore TDE Master Encryption Key (page 3-14)

¢ Setting a TDE Master Encryption Key if You Have Not Previously Configured
One (page 3-14)

* Migration of a Previously Configured TDE Master Encryption Key (page 3-15)

3.2.5.1 About Setting the Hardware Keystore TDE Master Encryption Key

You must create a TDE master encryption key that is stored inside the hardware
keystore.

Oracle Database uses the TDE master encryption key to encrypt or decrypt TDE table
keys or tablespace encryption keys inside the hardware security module.

If you have not previously configured a software keystore for Transparent Data
Encryption, then follow the steps in Setting a TDE Master Encryption Key if You Have
Not Previously Configured One (page 3-14). If you have already configured a
software keystore for TDE, then you must migrate it to the hardware security module,
as described in Migration of a Previously Configured TDE Master Encryption Key
(page 3-15).

Along with the current TDE master key, Oracle wallets maintain historical TDE master
keys that are generated after every re-key operation that rotates the TDE master key.
These historical TDE master keys help to restore Oracle database backups that were
taken previously using one of the historical TDE master keys.

3.2.5.2 Setting a TDE Master Encryption Key if You Have Not Previously Configured
One

You should complete this procedure if you have not previously configured a software
keystore for Transparent Data Encryption.

In a multitenant environment, you can create and manage the TDE master encryption
key from either the root or the PDB.

Note:

You can create TDE master encryption keys for use later on, and then
manually activate them. See Creating TDE Master Encryption Keys for Later
Use (page 4-22) for more information.

1. Ensure that you complete the procedure described in Step 3: Open the Hardware
Keystore (page 3-12).

2. Login to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root or to the PDB. For example:

3-14 Oracle Database Advanced Security Guide

Configuring a Hardware Keystore

sql pl us sec_adm n@rpdb as syskm
Enter password: password
Connect ed.

To find the available PDBs, query the DBA_PDBS data dictionary view. To check
the current PDB, run the show con_namnme command.

Ensure that the database is open in READ WRI TE mode.

You can set the TDE master encryption key if OPEN_MCDE is set to READ WRI TE.
To find the status, for a non-multitenant environment, query the OPEN_MODE
column of the V$DATABASE dynamic view. If you are in a multitenant
environment, then query the V$PDBS view. (If you cannot access these views, then
connect as SYSDBA and try the query again. In order to connect as SYSKMfor this
type of query, you must create a password file for it. See Oracle Database
Administrator’s Guide for more information.)

Run the following SQL statement:

ADM NI STER KEY MANAGEMENT SET KEY [USING TAG 'tag'] [FORCE KEYSTORE] | DENTIFI ED
BY [EXTERNAL STORE | "user i d: password"] [CONTAINER = ALL | CURRENT]

In this specification:

e tag is the associated attributes and information that you define. Enclose this
setting in single quotation marks (').

* FORCE KEYSTORE enables the keystore operation if the keystore is closed.
e | DENTI FI ED BY can be one of the following settings:

— EXTERNAL STORE uses the keystore password stored in the external
store to perform the keystore operation.

— user_i d: password:user _idis the user ID created for the hardware
keystore; passwor d is the password created for the hardware keystore.
Enclose the user _i d: passwor d string in double quotation marks (" ")
and separate user _i d and passwor d with a colon (:).

e CONTAI NERis for use in a multitenant environment. Enter ALL to set the
keystore in all of the PDBs in this CDB, or CURRENT for the current PDB.

For example:

ADM NI STER KEY MANAGEMENT SET KEY | DENTI FI ED BY "psnith: password”;

keystore altered.

3.2.5.3 Migration of a Previously Configured TDE Master Encryption Key

You must migrate the previously configured TDE master encryption key if you
previously configured a software keystore.

Tools such as Oracle Data Pump and Oracle Recovery Manager require access to the
old software keystore to perform decryption and encryption operations on data
exported or backed up using the software keystore. You can migrate from the software
to the hardware keystore by following the instructions in Migrating Between a
Software Password Keystore and a Hardware Keystore (page 4-11).

Along with the current TDE master key, Oracle wallets maintain historical TDE master
keys that are generated after every re-key operation that rotates the TDE master key.

Configuring Transparent Data Encryption 3-15

Encrypting Columns in Tables

These historical TDE master keys help to restore Oracle database backups that were
taken previously using one of the historical TDE master keys.

3.2.6 Step 5: Encrypt Your Data

After you have completed the hardware keystore configuration, you can begin to
encrypt data.

You can encrypt individual columns in a table or entire tablespaces.

® See the following topics for more information about encrypting data:
- Encrypting Columns in Tables (page 3-16)
- Encrypting Tablespaces (page 3-25)

3.3 Encrypting Columns in Tables

You can use Transparent Data Encryption to encrypt individual columns in database
tables.

Topics:
¢ About Encrypting Columns in Tables (page 3-16)
¢ Data Types That Can Be Encrypted with TDE Column Encryption (page 3-17)

¢ Restrictions on Using Transparent Data Encryption Column Encryption
(page 3-18)

* Creating Tables with Encrypted Columns (page 3-18)
¢ Encrypting Columns in Existing Tables (page 3-22)
* Creating an Index on an Encrypted Column (page 3-23)
* Adding Salt to an Encrypted Column (page 3-24)
* Removing Salt from an Encrypted Column (page 3-24)
¢ Changing the Encryption Key or Algorithm for Tables with Encrypted Columns
(page 3-24)
3.3.1 About Encrypting Columns in Tables

You can encrypt individual columns in tables.

Whether you choose to encrypt individual columns or entire tablespaces depends on
the data types that the table has. There are also several features that do not support
TDE column encryption.

See Also:

¢ Data Types That Can Be Encrypted with TDE Column Encryption
(page 3-17)

® Restrictions on Using Transparent Data Encryption Column Encryption
(page 3-18)

3-16 Oracle Database Advanced Security Guide

Encrypting Columns in Tables

3.3.2 Data Types That Can Be Encrypted with TDE Column Encryption

Oracle Database supports a specific set of data types that can be used with TDE
column encryption.

You can encrypt data columns that use a variety of different data types.

Supported data types are as follows:
e Bl NARY_DOUBLE

e Bl NARY_FLOAT

e CHAR

e DATE

e | NTERVAL DAY TO SECOND
e | NTERVAL YEAR TO MONTH
¢ NCHAR

e NUMBER

e NVARCHAR2

* RAW(legacy or extended)

e Tl MESTAMP (includes TI MESTAMP W TH TI ME ZONE and TI MESTAMP W TH
LOCAL TI ME ZONE)

¢ VARCHAR?Z (legacy or extended)

You cannot encrypt a column if the encrypted column size is greater than the size
allowed by the data type of the column.

Table 3-1 (page 3-17) shows the maximum allowable sizes for various data types.

Table 3-1 Maximum Allowable Size for Data Types
- - - |

Data Type Maximum Size
CHAR 1932 bytes
VARCHAR?Z (legacy) 3932 bytes
VARCHARZ (extended) 32,699 bytes
NVARCHAR?Z (legacy) 1966 bytes
NVARCHAR2 (extended) 16,315 bytes
NCHAR 966 bytes
RAW(extended) 32,699 bytes

Configuring Transparent Data Encryption 3-17

Encrypting Columns in Tables

Note:

TDE tablespace encryption does not have these data type restrictions. See
Encrypting Tablespaces (page 3-25) for more information.

3.3.3 Restrictions on Using Transparent Data Encryption Column Encryption

TDE encrypts at the SQL layer. Oracle Database utilities that bypass the SQL layer
cannot use the TDE column encryption services.

Do not use TDE column encryption with the following database features:
¢ Index types other than B-tree

¢ Range scan search through an index

e Synchronous change data capture

¢ Transportable tablespaces

In addition, you cannot use TDE column encryption to encrypt columns used in
foreign key constraints.

Applications that must use these unsupported features can use the DBMS_CRYPTO
PL/SQL package for their encryption needs.

Transparent Data Encryption protects data stored on a disk or other media. It does not
protect data in transit. Use the network encryption solutions discussed in Oracle
Database Security Guide to encrypt data over the network.

See Also:

* How Transparent Data Encryption Works with Export and Import
Operations (page 6-1)

¢ Data Types That Can Be Encrypted with TDE Column Encryption
(page 3-17)

e Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_CRYPTOPL/SQL package

® Oracle Database SQL Language Reference for more information about
identity columns, which are created with the CREATE TABLE statement

3.3.4 Creating Tables with Encrypted Columns

You can create new tables that have encrypted columns. Oracle Database provides a
selection of different algorithms that you can use to definite the encryption.

Topics:
® About Creating Tables with Encrypted Columns (page 3-19)

¢ Creating a Table with an Encrypted Column Using the Default Algorithm
(page 3-19)

3-18 Oracle Database Advanced Security Guide

Encrypting Columns in Tables

® Creating a Table with an Encrypted Column Using No Algorithm or a Non-
Default Algorithm (page 3-20)

e Using the NOMAC Parameter to Save Disk Space and Improve Performance
(page 3-20)

* Example: Using the NOMAC Parameter in a CREATE TABLE Statement
(page 3-21)

e Example: Changing the Integrity Algorithm for a Table (page 3-21)

® Creating an Encrypted Column in an External Table (page 3-21)

3.3.4.1 About Creating Tables with Encrypted Columns

You can use the CREATE TABLE SQL statement to create a table with an encrypted
column.

To create relational tables with encrypted columns, you can specify the SQL ENCRYPT
clause when you define database columns with the CREATE TABLE SQL statement.

3.3.4.2 Creating a Table with an Encrypted Column Using the Default Algorithm

By default, TDE uses the AES encryption algorithm with a 192-bit key length
(AES192).

If you encrypt a table column without specifying an algorithm, then the column is
encrypted using the AES192 algorithm.

TDE adds salt to plaintext before encrypting it. Adding salt makes it harder for
attackers to steal data through a brute force attack. TDE also adds a Message
Authentication Code (MAC) to the data for integrity checking. The SHA- 1 integrity
algorithm is used by default.

* To create a table that encrypts a column, use the CREATE TABLE SQL statement
with the ENCRYPT clause.

For example, to encrypt a table column using the default algorithm:

CREATE TABLE enpl oyee (
first_name VARCHAR2(128),
| ast _nanme VARCHAR2(128),
enpl D NUMBER,
sal ary NUMBER(6) ENCRYPT);

This example creates a new table with an encrypted column (sal ar y). The
column is encrypted using the default encryption algorithm (AES192). Salt and
MAC are added by default. This example assumes that the wallet is open and a
master key is set.

Note:

If there are multiple encrypted columns in a table, then all of these columns
must use the same pair of encryption and integrity algorithms.

Salt is specified at the column level. This means that an encrypted column in a
table can choose not to use salt irrespective of whether or not other encrypted
columns in the table use salt.

Configuring Transparent Data Encryption 3-19

Encrypting Columns in Tables

3.3.4.3 Creating a Table with an Encrypted Column Using No Algorithm or a Non-
Default Algorithm

You an use the CREATE TABLE SQL statement to create a table with an encrypted
column.

By default, TDE adds salt to plaintext before encrypting it. Adding salt makes it
harder for attackers to steal data through a brute force attack. However, if you plan to
index the encrypted column, then you must use the NO SALT parameter.

¢ To create a table that uses an encrypted column that is a non-default algorithm or
no algorithm, run the CREATE TABLE SQL statement as follows:

— If you do not want to use any algorithm, then include the ENCRYPT NO SALT
clause.

- If you want to use a non-default algorithm, then use the ENCRYPT USI NG
clause, followed by one of the following algorithms enclosed in single
quotation marks:

* 3DES168

* AES128

* AES192 (default)
* AES256

The following example shows how to specify encryption settings for the enpl Dand
sal ary columns.

CREATE TABLE enpl oyee (
first_name VARCHAR2(128),
| ast _nanme VARCHAR2(128),
enpl D NUMBER ENCRYPT NO SALT,
sal ary NUMBER(6) ENCRYPT USI NG ' 3DES168');

In this example:

¢ The enpl Dcolumn is encrypted and does not use salt. Both the enpl Dand
sal ary columns will use the 3DES168 encryption algorithm, because all of the
encrypted columns in a table must use the same encryption algorithm.

e Thesal ary column is encrypted using the 3DES168 encryption algorithm. Note
that the string that specifies the algorithm must be enclosed in single quotation
marks (''). The sal ary column uses salt by default.

3.3.4.4 Using the NOMAC Parameter to Save Disk Space and Improve Performance

You can bypass checks that TDE performs. This can save up to 20 bytes of disk space
per encrypted value.

If the number of rows and encrypted columns in the table is large, then bypassing TDE
checks can add up to a significant amount of disk space. In addition, this saves
processing cycles and reduces the performance overhead associated with TDE.

TDE uses the SHA- 1 integrity algorithm by default. All of the encrypted columns in a
table must use the same integrity algorithm. If you already have a table column using
the SHA- 1 algorithm, then you cannot use the NOVAC parameter to encrypt another
column in the same table.

3-20 Oracle Database Advanced Security Guide

Encrypting Columns in Tables

* To bypass the integrity check during encryption and decryption operations, use
the NOVAC parameter in the CREATE TABLE and ALTER TABLE statements.

See Also:

Performance and Storage Overhead of Transparent Data Encryption
(page 5-3)

3.3.4.5 Example: Using the NOMAC Parameter in a CREATE TABLE Statement

You can use the CREATE TABLE SQL statement to encrypt a table column using the
NOVAC parameter.

Example 3-1 (page 3-21) creates a table with an encrypted column. The enpl D
column is encrypted using the NOVAC parameter.

Example 3-1 Using the NOMAC parameter in a CREATE TABLE statement

CREATE TABLE enpl oyee (
first_name VARCHAR2(128),
| ast _nanme VARCHAR2(128),
enpl D NUMBER ENCRYPT ' NOVAC
sal ary NUMBER(6));
3.3.4.6 Example: Changing the Integrity Algorithm for a Table

You can use the ALTER TABLE SQL statement to change the integrity algorithm for a
database table.

Example 3-2 (page 3-21) shows how to change the integrity algorithm for encrypted
columns in a table. The encryption algorithm is set to 3DES168 and the integrity
algorithm is set to SHA- 1. The second ALTER TABLE statement sets the integrity
algorithm to NOVAC.

Example 3-2 Changing the Integrity Algorithm for a Table
ALTER TABLE EMPLOYEE REKEY USI NG ' 3DES168' 'SHA-1';

ALTER TABLE EMPLOYEE REKEY USI NG ' 3DES168' ' NOMAC ;

3.3.4.7 Creating an Encrypted Column in an External Table

The external table feature enables you to access data in external sources as if the data
were in a database table.

External tables can be updated using the ORACLE_DATAPUMP access driver.

e To encrypt specific columns in an external table, use the ENCRYPT clause when
you define those columns:

A system-generated key encrypts the columns. For example, the following
CREATE TABLE SQL statement encrypts the ssn column using the 3DES168
algorithm:

CREATE TABLE enp_ext (
first_nane,

ssn ENCRYPT USI NG ' 3DES168',

Configuring Transparent Data Encryption 3-21

Encrypting Columns in Tables

If you plan to move an external table to a new location, then you cannot use a
randomly generated key to encrypt the columns. This is because the randomly
generated key will not be available at the new location.

For such scenarios, you should specify a password while you encrypt the columns.
After you move the data, you can use the same password to regenerate the key
required to access the encrypted column data at the new location.

Table partition exchange also requires a password-based TDE table key.

Example 3-3 (page 3-22) creates an external table using a password to create the TDE
table key.

Example 3-3 Creating a New External Table with a Password-Generated TDE Table
Key

CREATE TABLE enp_ext (

first_nane,

| ast _nane,

enpl D,

sal ary,

ssn ENCRYPT | DENTI FI ED BY password
) ORGANI ZATI ON EXTERNAL

TYPE ORACLE_DATAPUMP
DEFAULT DI RECTORY "D DI R’
LOCATI O\(' enp_ext . dat")

)
REJECT LIMT UNLIM TED
AS SELECT * FROM EMPLOYEE,

3.3.5 Encrypting Columns in Existing Tables

You can encrypt columns in existing tables. As with new tables, you have a choice of
different algorithms to use to definite the encryption.

Topics:

¢ About Encrypting Columns in Existing Tables (page 3-22)

* Adding an Encrypted Column to an Existing Table (page 3-22)
* Encrypting an Unencrypted Column (page 3-23)

¢ Disabling Encryption on a Column (page 3-23)

3.3.5.1 About Encrypting Columns in Existing Tables

The ALTER TABLE SQL statement enables you to encrypt columns in an existing table.

To add an encrypted column to an existing table, or to encrypt or decrypt an existing
column, you use the ALTER TABLE SQL statement with the ADD or MODI FY clause.

3.3.5.2 Adding an Encrypted Column to an Existing Table

You can encrypt columns in existing tables, use a different algorithm, and use NO
SALT to index the column.

* Toadd an encrypted column to an existing table, use the ALTER TABLE ADD
statement, specifying the new column with the ENCRYPT clause.

3-22 Oracle Database Advanced Security Guide

Encrypting Columns in Tables

Example 3-4 (page 3-23) adds an encrypted column, ssn, to an existing table, called
enpl oyee. The ssn column is encrypted with the default AES192 algorithm. Salt and
MAC are added by default.

Example 3-4 Adding an Encrypted Column to an Existing Table
ALTER TABLE enpl oyee ADD (ssn VARCHAR2(11) ENCRYPT);

3.3.5.3 Encrypting an Unencrypted Column
You can use the ALTER TABLE MODI FY statement to encrypt an existing unencrypted
column.

* Toencrypt an existing unencrypted column, use the ALTER TABLE MODI FY
statement, specifying the unencrypted column with the ENCRYPT clause.

The following example encrypts the f i r st _nanme column in the enpl oyee table. The
first_name column is encrypted with the default AES192 algorithm. Salt is added to
the data, by default. You can encrypt the column using a different algorithm. If you
want to index a column, then you must specify NO SALT. You can also bypass
integrity checks by using the NOVAC parameter.

ALTER TABLE enpl oyee MODIFY (first_name ENCRYPT);

The following example encrypts the f i r st _name column in the employee table using
the NOVAC parameter.

ALTER TABLE enpl oyee MODI FY (first_name ENCRYPT ' NOWAC);

3.3.5.4 Disabling Encryption on a Column

You may want to disable encryption for reasons of compatibility or performance.

e To disable column encryption, use the ALTER TABLE MCODI FY command with
the DECRYPT clause.

Example 3-5 (page 3-23) decrypts the f i r st _nane column in the enpl oyee table.
Example 3-5 Turning Off Column Encryption
ALTER TABLE enpl oyee MODI FY (first_name DECRYPT);

3.3.6 Creating an Index on an Encrypted Column

You can create an index on an encrypted column.

The column being indexed must be encrypted without salt. If the column is encrypted
with salt, then the ORA- 28338: cannot encrypt indexed colum(s) with
sal t error is raised.

* To create an index on an encrypted column, use the CREATE | NDEX statement
with the ENCRYPT NO SALT clause.

Example 3-6 (page 3-23) shows how to create an index on a column that has been
encrypted without salt.

Example 3-6 Creating Index on a Column Encrypted Without Salt

CREATE TABLE enpl oyee (
first_name VARCHAR2(128),
| ast _name VARCHAR2(128),
enpl D NUMBER ENCRYPT NO SALT,
sal ary NUMBER(6) ENCRYPT USI NG ' 3DES168');

Configuring Transparent Data Encryption 3-23

Encrypting Columns in Tables

CREATE | NDEX enpl oyee_i dx on enpl oyee (enplD);

3.3.7 Adding Salt to an Encrypted Column

Salt, which is a random string added to data before encryption, is a way to strengthen
the security of encrypted data. .

Salt ensures that the same plaintext data does not always translate to the same
encrypted text. Salt removes the one common method that intruders use to steal data,
namely, matching patterns of encrypted text. Adding salt requires an additional 16
bytes of storage per encrypted data value.

¢ Toadd or remove salt from encrypted columns, use the ALTER TABLE MODI FY
SQL statement.

For example, suppose you want to encrypt the f i r st _nane column using salt. If the
first_name column was encrypted without salt earlier, then the ALTER TABLE
MODI FY statement reencrypts it using salt.

ALTER TABLE enpl oyee MODIFY (first_name ENCRYPT SALT);

3.3.8 Removing Salt from an Encrypted Column

You can use the ALTER TABLE SQL statement to remove salt from an encrypted
column.

¢ Toremove salt from an encrypted column, use the ENCRYPT NO SALT clause in
the ALTER TABLE SQL statement.

For example, suppose you wanted to remove salt from the f i r st _name column. If
you must index a column that was encrypted using salt, then you can use this
statement to remove the salt before indexing

ALTER TABLE enpl oyee MODI FY (first_name ENCRYPT NO SALT);

3.3.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns

You can use the ALTER TABLE SQL statement to change the encryption key or
algorithm used in encrypted columns.

Each table can have only one TDE table key for its columns. You can regenerate the
TDE table key with the ALTER TABLE statement. This process generates a new key,
decrypts the data in the table using the previous key, reencrypts the data using the
new key, and then updates the table metadata with the new key information. You can
also use a different encryption algorithm for the new TDE table key.

* To change the encryption key or algorithm for tables that contain encrypted
columns, use the ALTER TABLE SQL statement with the REKEY or REKEY USI NG
clause.

For example:

ALTER TABLE enpl oyee REKEY;

Example 3-7 (page 3-24) regenerates the TDE table key for the enpl oyee table by
using the 3DES168 algorithm.

Example 3-7 Changing an Encrypted Table Column Encryption Key and Algorithm
ALTER TABLE enpl oyee REKEY USI NG ' 3DES168';

3-24 Oracle Database Advanced Security Guide

Encrypting Tablespaces

3.4 Encrypting Tablespaces

You can perform encryption operations on both offline and online tablespaces and
databases.

Topics:
* Restrictions on Using Transparent Data Encryption Tablespace Encryption
(page 3-25)

* Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption
(page 3-25)

® Step 2: Set the Tablespace TDE Master Encryption Key (page 3-27)

e Step 3: Create the Encrypted Tablespace (page 3-27)

3.4.1 Restrictions on Using Transparent Data Encryption Tablespace Encryption

You should be aware of restrictions on using Transparent Data Encryption when you
encrypt a tablespace.

Note the following restrictions:

e Transparent Data Encryption (TDE) tablespace encryption encrypts or decrypts
data during read and write operations, as opposed to TDE column encryption,
which encrypts and decrypts data at the SQL layer. This means that most
restrictions that apply to TDE column encryption, such as data type restrictions
and index type restrictions, do not apply to TDE tablespace encryption.

® To perform import and export operations, use Oracle Data Pump.

See Also:

Oracle Database Utilities for more information about Oracle Data Pump

3.4.2 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption

You must set the COMPATI BLE initialization parameter before creating an encrypted
tablespace.

Topics:

e About Setting the COMPATIBLE Initialization Parameter for Tablespace
Encryption (page 3-25)

e Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption
(page 3-26)

3.4.2.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace
Encryption

A minimum COVPATI BLE setting of 11. 2. 0. 0 enables the full set of tablespace
encryption features.

Setting the compatibility to 11. 2. 0. 0 instead of 11. 1. 0. O enables the following
additional features:

Configuring Transparent Data Encryption 3-25

Encrypting Tablespaces

The 11. 2. 0. O setting enables the database to use any of the four supported
algorithms for data encryption (3DES168, AES128, AES192, and AES256).

The 11. 2. 0. 0 setting enables the migration of a key from a software keystore to
a hardware keystore (ensure that the TDE master encryption key was configured
for the hardware keystore)

The 11. 2. 0. O setting enables resetting and rotating the TDE master encryption
key

Be aware that once you set this parameter to 11. 2. 0. O, the change is irreversible. To
use tablespace encryption, ensure that the compatibility setting is at the minimum,
whichis 11. 1. 0. 0.

See Also:

® Oracle Database SQL Language Reference for more information about the
COVPATI BLE parameter

e QOracle Database Administrator’s Guide for more information about
initialization parameter files

3.4.2.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption

To set the COMPATI BLE initialization parameter, you must edit the initialization
parameter file for the database instance.

1.

Log in to the database instance.
In a multitenant environment, log in to the PDB. For example:

sql pl us sec_admi n@r pdb
Enter password: password
Connect ed.

To find the available PDBs, query the DBA_PDBS data dictionary view. To check
the current PDB, run the show con_nane command.

Check the current setting of the COMPATI BLE parameter.
For example:

SHOW PARAVETER COMPATI BLE

NAMVE TYPE VALUE
conpatibl e string 11.0.0.0
noncdbconpati bl e BOOLEAN FALSE

If you must change the COVPATI BLE parameter, then complete the remaining
steps in this procedure.

The value should be 11.2.0.0 or higher.
Locate the initialization parameter file for the database instance.

e UNIX systems: This file is in the ORACLE_HOVE/ dbs directory and is named
i ni t ORACLE_SI D. or a (for example, i ni t mydb. or a).

3-26 Oracle Database Advanced Security Guide

Encrypting Tablespaces

* Windows systems: This file is in the ORACLE_HOVE\ dat abase directory and
is named i ni t ORACLE_SI D. or a (for example, i ni t mydb. or a).

5. Edit the initialization parameter file to use the new COVPATI| BLE setting.
For example:

conpatible=11.2.0.0.0

6. In SQL*Plus, connect as a user who has the SYSDBA administrative privilege, and
then shut down the database.

For example:

CONNECT / AS SYSDBA
SHUTDOAN

7. Edit the initialization parameter file to use the correct COMPATI BLE setting.

For example:

COWPATIBLE = 12.1.0.0

8. In SQL*Plus, ensure that you are connected as a user who has the SYSDBA
administrative privilege, and then start the database.

For example:

CONNECT / AS SYSDBA
STARTUP

If tablespace encryption is in use, then open the keystore at the database mount.
The keystore must be open before you can access data in an encrypted tablespace.

STARTUP MOUNT;
ADM NI STER KEY MANAGEMENT SET KEYSTORE OPEN | DENTI FI ED BY keyst ore_password;
ALTER DATABASE OPEN;

3.4.3 Step 2: Set the Tablespace TDE Master Encryption Key

You should ensure that you have configured the TDE master encryption key.
* Set the TDE master encryption key as follows:

- For software TDE master encryption keys, see Step 4: Set the Software TDE
Master Encryption Key (page 3-8).

- For hardware TDE master encryption keys, see Step 4: Set the Hardware
Keystore TDE Master Encryption Key (page 3-14).

3.4.4 Step 3: Create the Encrypted Tablespace

After you have set the COMPATI BLE initialization parameter, you are ready to create
the encrypted tablespace.

Topics:
* About Creating Encrypted Tablespaces (page 3-28)
e Creating an Encrypted Tablespace (page 3-28)

* Example: Creating an Encrypted Tablespace That Uses 3DES168 (page 3-29)

Configuring Transparent Data Encryption 3-27

Encrypting Tablespaces

¢ Example: Creating an Encrypted Tablespace That Uses the Default Algorithm
(page 3-29)

3.4.4.1 About Creating Encrypted Tablespaces

To create an encrypted tablespace, you can use the CREATE TABLESPACE SQL
statement.

You must have the CREATE TABLESPACE system privilege to create an encrypted
tablespace.

You cannot change an existing tablespace to make it encrypted. You can, however,
import data into an encrypted tablespace by using Oracle Data Pump. You can also
use a SQL statement such as CREATE TABLE. .. AS SELECT. .. or ALTER

TABLE. . . MOVE. . . to move data into an encrypted tablespace. The CREATE

TABLE. .. AS SELECT. .. statement creates a table from an existing table. The ALTER
TABLE. . . MOVE. . . statement moves a table into the encrypted tablespace.

For security reasons, you cannot encrypt a tablespace with the NO SALT option.

You can query the ENCRYPTED column of the DBA_TABLESPACES and
USER TABLESPACES data dictionary views to verify if a tablespace was encrypted.

See Also:

Oracle Database Reference for more information about these data dictionary
views

3.4.4.2 Creating an Encrypted Tablespace

To create an encrypted tablespace, you must use the CREATE TABLESPACE statement

with the ENCRYPTI ON USI NGclause.

1. Login to the database instance as a user who has been granted the CREATE
TABLESPACE system privilege.

In a multitenant environment, log in to the PDB. For example:

sql pl us sec_admi n@rpdb as syskm
Enter password: password
Connect ed.

To find the available PDBs, query the DBA_PDBS data dictionary view. To check
the current PDB, run the show con_nane command.

2. Runthe CREATE TABLESPACE statement, using its encryption clauses.
For example:

CREATE TABLESPACE encrypt _ts
DATAFI LE ' $ORACLE_HOMWE/ dbs/ encrypt _df . dbf' SIZE 1M
ENCRYPTI ON USI NG " AES256'
DEFAULT STORAGE (ENCRYPT);

In this specification:

e ENCRYPTI ON USI NG ' AES256" specifies the encryption algorithm and the
key length for the encryption. Enclose this setting in single quotation marks ('
). The key lengths are included in the names of the algorithms. If you do not

3-28 Oracle Database Advanced Security Guide

Transparent Data Encryption Data Dynamic and Data Dictionary Views

specify an encryption algorithm, then the default encryption algorithm,
AES128, is used. Choose from the following algorithms:

- 3DES168
- AES128
- AES192
- AES256

* ENCRYPT in the DEFAULT STORAGE clause encrypts the tablespace.

See Also:

Oracle Database SQL Language Reference for the CREATE TABLESPACE
statement syntax

3.4.4.3 Example: Creating an Encrypted Tablespace That Uses 3DES168

You can use the CREATE TABLESPACE SQL statement to create an encrypted
tablespace.

Example 3-8 (page 3-29) creates a tablespace called secur espace_1 that is
encrypted using the 3DES algorithm. The key length is 168 bits.

Example 3-8 Creating an Encrypted Tablespace That Uses 3DES168

CREATE TABLESPACE securespace_1

DATAFI LE ' / hone/ user/ or adat a/ secur e01. dbf"
SI ZE 150M

ENCRYPTI ON USI NG ' 3DES168'

DEFAULT STORAGE(ENCRYPT) ;

3.4.4.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm

You can use the CREATE TABLESPACE SQL statement to create an encrypted
tablespace that uses the default algorithm.

Example 3-9 (page 3-29) creates a tablespace called secur espace_2. Because no
encryption algorithm is specified, the default encryption algorithm (AES128) is used.
The key length is 128 bits.

You cannot encrypt an existing tablespace.
Example 3-9 Creating an Encrypted Tablespace That Uses the Default Algorithm

CREATE TABLESPACE securespace_2

DATAFI LE ' / hone/ user/ or adat a/ secur e01. dbf'
Sl ZE 150M

ENCRYPTI ON

DEFAULT STORAGE(ENCRYPT) ;

3.5 Transparent Data Encryption Data Dynamic and Data Dictionary Views

Oracle Database provides a set of dynamic and data dictionary views that you can
query to find more information about Transparent Data Encryption data.

Table 3-2 (page 3-30) describes these dynamic and data dictionary views.

Configuring Transparent Data Encryption 3-29

Transparent Data Encryption Data Dynamic and Data Dictionary Views

Table 3-2 Transparent Data Encryption Related Views
- -]

View Description

ALL_ENCRYPTED_COLUWNS Displays encryption information about encrypted columns
in the tables accessible to the current user

DBA_ENCRYPTED_COLUWNS Displays encryption information for all of the encrypted
columns in the database

USER_ENCRYPTED_COLUMNS Displays encryption information for encrypted table
columns in the current user's schema

DBA TABLESPACE_USAGE M Describes tablespace usage metrics for all types of

ETRI CS tablespaces, including permanent, temporary, and undo
tablespaces
VSCLI ENT_SECRETS Lists the properties of the strings (secrets) that were stored in

the keystore for various features (clients).

In a multitenant environment, when you query this view in a
PDB, then it displays information about keys that were
created or activated for the current PDB. If you query this
view in the root, then it displays this information about keys
for all of the PDBs.

\ Displays information about the tablespaces that are
$ENCRYPTED_TABLESPACES encrypted

VSENCRYPTI ON_KEYS When used with keys that have been rotated with the
ADM NI STER KEY MANAGEMENT statement, displays
information about the TDE master encryption keys.

In a multitenant environment, when you query this view in a
PDB, it displays information about keys that were created or
activated for the current PDB. If you query this view in the
root, it displays this information about keys for all of the
PDBs.

VSENCRYPTI ON_WALLET Displays information on the status of the keystore and the
keystore location for TDE

VSWALLET Displays metadata information for a PKI certificate, which
can be used as a master encryption key for TDE

See Also:

Oracle Database Reference for detailed information about these views

3-30 Oracle Database Advanced Security Guide

A

Managing the Keystore and the TDE
Master Encryption Key

You can modify and manage settings for the keystore and TDE master encryption key,
and store secrets used by Oracle Database and store Oracle GoldenGate secrets in a
keystore.

Topics:

* Managing the Keystore (page 4-1)

* Managing the TDE Master Encryption Key (page 4-22)

e Storing Secrets Used by Oracle Database (page 4-38)

¢ Storing Oracle GoldenGate Secrets in a Keystore (page 4-44)

4.1 Managing the Keystore

You can perform maintenance activities on keystores such as changing passwords, and
backing up, merging, and moving keystores.

Topics:

* Changing the Password of a Password-Based Software Keystore (page 4-2)

¢ Changing the Password of a Hardware Keystore (page 4-3)

* Backing Up Password-Based Software Keystores (page 4-3)

* Backups of the Hardware Keystore (page 4-5)

* Merging Software Keystores (page 4-6)

¢ Moving a Software Keystore to a New Location (page 4-9)

* Moving a Software Keystore Out of Automatic Storage Management (page 4-10)

¢ Migrating Between a Software Password Keystore and a Hardware Keystore
(page 4-11)

e Migration of Keystores to and from Oracle Key Vault (page 4-17)

¢ Closing a Keystore (page 4-17)

¢ Using a Software Keystore That Resides on ASM Volumes (page 4-20)
* Backup and Recovery of Encrypted Data (page 4-20)

® Deletion of Keystores (page 4-21)

Managing the Keystore and the TDE Master Encryption Key 4-1

Managing the Keystore

See Also:

¢ Configuring a Software Keystore (page 3-1)

¢ Configuring a Hardware Keystore (page 3-10)

4.1.1 Changing the Password of a Password-Based Software Keystore

Oracle Database enables you to easily change password-based software keystore
passwords.

Topics:

¢ About Changing the Password of a Password-Based Software Keystore
(page 4-2)

* Changing the Password-Based Software Keystore Password (page 4-2)

4.1.1.1 About Changing the Password of a Password-Based Software Keystore
You can only change (rotate) the password for password-based software keystores.

You can change this password at any time, as per the security policies, compliance
guidelines, and other security requirements of your site. As part of the command to
change the password, you will be forced to specify the W TH BACKUP clause, and thus
forced to make a backup of the current keystore. During the password change
operation, Transparent Data Encryption operations such as encryption and decryption
will continue to work normally.

You can change this password at any time. You may want to change this password if
you think it was compromised.

4.1.1.2 Changing the Password-Based Software Keystore Password

To change the password of a password-based software keystore, you must use the
ADM NI STER KEY MANAGEMENT statement.

1. Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root. For example:

sql pl us c##tsec_admin as syskm
Enter password: password
Connect ed.

2. Run the following SQL statement:

ADM NI STER KEY MANAGEMENT ALTER KEYSTORE PASSWORD | DENTI FI ED BY
ol d_password SET new password [W TH BACKUP [USI NG ' backup_i dentifier']];

In this specification:
* ol d_passwor d is the current keystore password that you want to change.
* new_passwor d is the new password that you set for the keystore.

e W TH BACKUP creates a backup of the current keystore before the password
is changed. You must include this clause.

4-2 Oracle Database Advanced Security Guide

Managing the Keystore

* Dbackup_i dentifi er specifies an optional identifier string for the backup
that is created. The backup_i denti fi er is added to the name of the
backup file. Enclose backup_i dent i fi er in single quotation marks (' ').
This identifier is appended to the named keystore file (for example,
ewal | et _time_stanp_enp_key pwd_change. pl12).

The following example backs up the current keystore and then changes the
password for the keystore:

ADM NI STER KEY MANAGEMENT ALTER KEYSTORE PASSWORD | DENTI FI ED BY
ol d_password SET new _password W TH BACKUP USI NG ' pwd_change';

keystore al tered.

4.1.2 Changing the Password of a Hardware Keystore

To change the password of a hardware keystore, you must use the ADM NI STER KEY
MANAGEMENT statement.

1.

Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root. For example:

sql pl us c##sec_admin as syskm
Enter password: password
Connect ed.

Close the hardware keystore.

For example:

ADM NI STER KEY MANAGEMENT SET KEYSTORE CLOSE | DENTI FI ED BY "psnith: password”;
See "Closing a Hardware Keystore (page 4-19)".

From the hardware security module management interface, create a new
hardware security module password.

In SQL*Plus, open the hardware keystore.
ADM NI STER KEY MANAGEMENT SET KEYSTORE OPEN | DENTI FI ED BY "psnit h: new_password”;

See "Step 3: Open the Software Keystore (page 3-7)".

4.1.3 Backing Up Password-Based Software Keystores

When you back up a password-based software keystore, you optionally can create a
backup identifier string to describe the type of backup.

Topics:

About Backing Up Password-Based Software Keystores (page 4-4)
Creating a Backup Identifier String for the Backup Keystore (page 4-4)

How the VSENCRYPTION_WALLET View Interprets Backup Operations
(page 4-4)

Backing Up a Password-Based Software Keystore (page 4-5)

Managing the Keystore and the TDE Master Encryption Key 4-3

Managing the Keystore

4.1.3.1 About Backing Up Password-Based Software Keystores

You must back up password-based software keystores, as per the security policy and
requirements of your site.

A backup of the keystore contains all of the keys contained in the original keystore.
Oracle Database prefixes the backup keystore with the creation time stamp (UTC). If
you provide an identifier string, then this string is inserted between the time stamp
and keystore name.

After you complete the backup operation, the keys in the original keystore are marked
as "backed up". You can check the status of keys querying the V
$ENCRYPTI ON_WALLET data dictionary view.

You cannot back up auto-login or local auto-login software keystores. No new keys
can be added to them directly through the ADM NI STER KEY MANAGEMENT
statement operations. The information in these keystores is only read and hence there
is no need for a backup.

If you have not yet backed up the keystore, then you can include the BACKUP clause in
the ADM NI STER KEY MANAGEMENT statement when you create the TDE master
encryption key. This both backs up the keystore and creates the TDE master
encryption key. (Step 4: Set the Software TDE Master Encryption Key (page 3-8) shows
an example of how to accomplish this.)

4.1.3.2 Creating a Backup Identifier String for the Backup Keystore

The backup file name of a software password keystore is derived from the name of the
password-based software keystore.

Oracle Database prefixes the software keystore password file name with the file
creation time stamp in UTC format. If you provide an identifier string, then this string
is inserted between the time stamp and keystore name.

¢ To create a backup identifier string for a backup keystore, use the ADM NI STER
KEY MANAGEMENT SQL statement with the BACKUP KEYSTORE clause, with the
following syntax:

ewal | et _creation-tine-stanp-in-UTC user-defined-string.pl2
When you create the backup identifier (user _def i ned_st ri ng), use the

operating system file naming convention. For example, in UNIX systems, you
may want to ensure that this setting does not have spaces.

Example 4-1 (page 4-4) shows the creation of a backup keystore that uses a bug
number as the user-identified string, and how the resultant keystore appears in the file
system.

Example 4-1 Creating a Backup Identifier String for a Backup Keystore

ADM NI STER KEY MANAGEMENT BACKUP KEYSTORE USI NG ' BUGL2966094" | DENTI FI ED BY
keyst ore_password;

Resultant keystore file:

eval | et _2013041513244657_BUG12966094. p12

4.1.3.3 How the VSENCRYPTION_WALLET View Interprets Backup Operations

In the VSENCRYPTI ON_WALLET view, the BACKUP column indicates if a copy of the
keystore had been created with the W TH BACKUP clause of the ADM NI STER KEY

4-4 Oracle Database Advanced Security Guide

Managing the Keystore

MANAGEMENT statement or the ADM NI STER KEY MANAGEMENT BACKUP KEYSTORE
statement.

When you modify a key or a secret, the modifications that you make do not exist in the
previously backed-up copy, because you make a copy and then modify the key itself.
Because there is no copy of the modification in the previous keystores, the BACKUP
column is set to NO, even if the BACKUP had been set to YES previously. Hence, if the
BACKUP column is YES, then after you perform an operation that requires a backup,
such as adding a custom attribute tag, the BACKUP column value changes to NO.

4.1.3.4 Backing Up a Password-Based Software Keystore

To back up a password-based software keystore, you must use the ADM NI STER KEY
MANAGEMENT statement with the BACKUP KEYSTORE clause.

1. Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root. For example:

sql pl us c##tsec_admi n as syskm
Enter password: password
Connect ed.

2. Run the following SQL statement:

ADM NI STER KEY MANAGENENT BACKUP KEYSTORE [USI NG ' backup_identifier']
| DENTI FI ED BY sof tware_keystore_password [TO ' keystore_l ocation'];

In this specification:

e USI NGbackup_i denti fi er is an optional string that you can provide to
identify the backup. Enclose this identifier in single quotation marks (' '). This
identifier is appended to the named keystore file (for example,
ewal | et _time-stanp_enp_key_backup. p12).

e sof tware_keyst ore_passwor d is the password for the keystore.

e keystore_| ocati on is the path at which the backup keystore is stored. If
you do not specify the keyst or e_| ocat i on, then the backup is created in
the same directory as the original keystore. Enclose this location in single
quotation marks (' ').

The following example backs up a software keystore in the same location as the
source keystore:

ADM NI STER KEY MANAGEMENT BACKUP KEYSTORE USI NG ' hr.enp_keystore' |DENTI FI ED BY
password TO '/etc/ ORACLE/ KEYSTORE/ DB/ ' ;

keystore altered.

After you run this statement, an ewal | et _i denti fi er. pl2 file (for example,
ewal | et _time-stanp_hr. enp_keyst ore. pl2) appears in the keystore
location.

4.1.4 Backups of the Hardware Keystore
You cannot use Oracle Database to back up hardware keystores.

See your HSM vendor instructions for information about backing up keys for
hardware keystores.

Managing the Keystore and the TDE Master Encryption Key 4-5

Managing the Keystore

4.1.5 Merging Software Keystores

You can merge software keystores in a variety of ways, such as merging two keystores
to create a third keystore, merging one keystore into an existing keystore, or merging
an auto-login software keystore into a password-based software keystore.

Topics:

* About Merging Software Keystores (page 4-6)

* Merging Two Software Keystores into a Third New Keystore (page 4-6)

* Merging One Software Keystore into an Existing Software Keystore (page 4-7)

¢ Merging an Auto-Login Software Keystore into an Existing Password-Based
Software Keystore (page 4-8)

* Reversing a Software Keystore Merge Operation (page 4-8)

4.1.5.1 About Merging Software Keystores

You can merge any combination of the software keystores. However, the merged
keystore must be a password-based software keystore, and it can have a password that
is different from the constituent keystores.

To use the merged keystore, you must explicitly open the merged keystore after you
create it, even if one of the constituent keystores was already open before the merge.

Whether a common key from two source keystores is added or overwritten to a
merged keystore depends on how you write the ADM NI STER KEY MANAGEMENT
merge statement. For example, if you merge Keystore 1 and Keystore 2 to create
Keystore 3, then the key in Keystore 1 is added to Keystore 3. If you merge Keystore 1
into Keystore 2, then the common key in Keystore 2 is not overwritten.

The ADM NI STER KEY MANAGEMENT merge statement has no bearing on the
configured keystore that is in use. However, the merged keystore can be used as the
new configured database keystore if you want. Remember that you must reopen the
keystore if you are using the newly created keystore as the keystore for the database at
the location configured by the sql net . or a file.

See Also:

e Migrating Between a Software Password Keystore and a Hardware
Keystore (page 4-11)

e Step 3: Open the Software Keystore (page 3-7)

4.1.5.2 Merging Two Software Keystores into a Third New Keystore

You can merge two software keystores into a third new keystore, so that the two
existing keystores are not changed.

1. Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root. For example:

4-6 Oracle Database Advanced Security Guide

Managing the Keystore

sql pl us c#fsec_adm n as syskm
Enter password: password
Connect ed.

Run the following SQL statement:

ADM NI STER KEY MANAGEMENT MERGE KEYSTORE ' keystorel_| ocation'

[I DENTI FI ED BY software_keystorel_password] AND KEYSTORE ' keystore2_| ocation'
[I DENTI FI ED BY sof t ware_keyst or e2_passwor d]

I NTO NEW KEYSTORE ' keyst ore3_| ocati on'

| DENTI FI ED BY sof t war e_keyst or e3_passwor d;

In this specification:

e keystorel_| ocati on is the directory location of the first keystore, which
will be left unchanged after the merge. Enclose this path in single quotation
marks (').

¢ Thel DENTI FI ED BY clause is required for the first keystore if it is a
password-based keystore. sof t war e_keyst or el_passwor d is the current
password for the first keystore.

e Kkeystore2_| ocati on is the directory location of the second keystore.
Enclose this path in single quotation marks (' ').

¢ The | DENTI FI ED BY clause is required for the second keystore if it is a
password-based keystore. sof t war e_keyst or e2_passwor d is the current
password for the second keystore.

e keystore3_| ocati on specifies the directory location of the new, merged
keystore. Enclose this path in single quotation marks (' '). If there is already an
existing keystore at this location, the command exits with an error.

e sof tware_keystore3_password is the new password for the merged
keystore.

The following example merges an auto-login software keystore with a password-
based keystore to create a merged password-based keystore at a new location:

ADM NI STER KEY MANAGEMENT MERGE KEYSTORE '/ et c/ ORACLE/ KEYSTORE/ DB1'
AND KEYSTORE '/ et ¢/ ORACLE/ KEYSTORE/ DB2'

| DENTI FI ED BY exi sting_password_for_keystore_2

I NTO NEW KEYSTORE ' / et ¢/ ORACLE/ KEYSTORE/ DB3'

| DENTI FI ED BY new_password_for_keystore_3;

keystore altered.

4.1.5.3 Merging One Software Keystore into an Existing Software Keystore

You can use the ADM NI STER KEY MANAGEMENT statement with the MERGE
KEYSTORE clause to merge one software keystore into another existing software
keystore.

To perform this type of merge, follow the steps in Merging Two Software
Keystores into a Third New Keystore (page 4-6) but use the following SQL
statement:

ADM NI STER KEY MANAGEMENT MERGE KEYSTORE ' keystorel | ocation'
[I DENTI FI ED BY software_keystorel_password]
I NTO EXI STI NG KEYSTORE ' keyst ore2_| ocati on'

Managing the Keystore and the TDE Master Encryption Key 4-7

Managing the Keystore

| DENTI FI ED BY sof t ware_keyst or e2_passwor d
[WTH BACKUP [USI NG ' backup_i dentifier]];

In this specification:

— keystorel_|l ocati on is the directory location of the first keystore, which
will be left unchanged after the merge. Enclose this path in single quotation
marks (').

— The | DENTI FI ED BY clause is required for the first keystore if it is a
password-based keystore. sof t war e_keyst or el_passwor d is the
password for the first keystore.

- keystore2_l ocati on is the directory location of the second keystore into
which the first keystore is to be merged. Enclose this path in single quotation
marks (').

- software_keyst or e2_passwor d is the password for the second keystore.

— W TH BACKUP creates a backup of the software keystore. Optionally, you can
use the USI NGclause to add a brief description of the backup. Enclose this
description in single quotation marks ('). This identifier is appended to the
named keystore file (for example, ewal | et _ti nme-
st anp_enp_key_backup. p12, with enp_key_backup being the backup
identifier). Follow the file naming conventions that your operating system
uses.

The resultant keystore after the merge operation is always a password-based keystore.

4.1.5.4 Merging an Auto-Login Software Keystore into an Existing Password-Based
Software Keystore

You can merge an auto-login software keystore into an existing password-based
software keystore.

e Use the ADM NI STER KEY MANAGEMENT MERGE KEYSTORE SQL statement to
merge an auto-login software keystore into an existing password-based software
keystore.

Example 4-2 (page 4-8) shows how to merge an auto-login software keystore into a
password-based software keystore. It also creates a backup of the second keystore
before creating the merged keystore.

Example 4-2 Merging a Software Auto-Login Keystore into a Password Keystore

ADM NI STER KEY MANAGEMENT MERGE KEYSTORE '/ et c/ ORACLE/ KEYSTORE/ DBL'
I NTO EXI STI NG KEYSTORE '/ et ¢/ ORACLE/ KEYSTORE/ DB2'
| DENTI FI ED BY password W TH BACKUP;

In this specification:
e MERCE KEYSTORE must specify the auto-login keystore.
e EXI STI NG KEYSTORE refers to the password keystore.

4.1.5.5 Reversing a Software Keystore Merge Operation
You cannot directly reverse a keystore merge operation.

When you merge a keystore into an existing keystore (rather than creating a new one),
you must include the W TH BACKUP clause in the ADM NI STER KEY MANAGEMENT

4-8 Oracle Database Advanced Security Guide

Managing the Keystore

statement to create a backup of this existing keystore. Later on, if you decide that you
must reverse the merge, you can replace the merged software keystore with the one
that you backed up.

In other words, suppose you want merge Keystore A into Keystore B. By using the
W TH BACKUP clause, you create a backup for Keystore B before the merge operation
begins. (The original Keystore A is still intact.) To reverse the merge operation, revert
to the backup that you made of Keystore B.

e Usethe ADM NI STER KEY MANAGEMENT MERGE KEYSTORE SQL statement to
perform merge operations.
— For example, to perform a merge operation into an existing keystore:

ADM NI STER KEY MANAGEMENT MERGE KEYSTORE '/ et ¢/ ORACLE/ KEYSTORE/ DBL'
I NTO EXI STI NG KEYSTORE '/ et ¢/ ORACLE/ KEYSTORE/ DB2'
| DENTI FI ED BY password W TH BACKUP USI NG "nergel”;

Replace the new keystore with the backup keystore, which in this case would
be named ewal | et _ti nme-stanp_nergel. pl2.

— To merge an auto-login keystore into a password-based keystore, use the
ADM NI STER KEY MANAGEMENT MERGE KEYSTORE SQL statement.

4.1.6 Moving a Software Keystore to a New Location

To move a software keystore to a new location, you must back up and close the
keystore, edit the sql net . or a file, and then physically move the keystore to the new
location.

If you are using Oracle Key Vault, then you can configure a TDE direct connection
where Key Vault directly manages the TDE master keys. In this case, you will never
need to manually move the keystore to a new location. See Oracle Key Vault
Administrator’s Guide for more information about using a TDE direct connection.

1. Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root or to the pluggable database
(PDB). For example, to log in to a PDB called hr pdb:

sql pl us sec_admi n@rpdb as syskm
Enter password: password
Connect ed.

To find the available PDBs, query the DBA_PDBS data dictionary view. To check
the current PDB, run the show con_nane command.

2. Make a backup copy of the software keystore.
See "Backing Up Password-Based Software Keystores (page 4-3)".

3. Close the software keystore.

For example:

ADM NI STER KEY MANAGEMENT SET KEYSTORE CLOSE; -- For an auto-login software
keystore

ADM NI STER KEY MANAGEMENT SET KEYSTORE CLOSE | DENTI FI ED BY
sof tware_keystore_password; -- For a password-based software keystore

Managing the Keystore and the TDE Master Encryption Key 4-9

Managing the Keystore

Exit the database session.
For example, if you are logged in to SQL*Plus:
EXIT

Back up and then manually edit the sgl net . or a file to point to the new location
where you want to move the keystore.

See the "Step 1: Set the Software Keystore Location in the sqlnet.ora File
(page 3-2)" for more information.

Use the operating system move command (such as mv) to move the keystore with
all of its keys to the new directory location.

4.1.7 Moving a Software Keystore Out of Automatic Storage Management

You can use the ADM NI STER KEY MANAGEMENT statement to move a software
keystore out Automatic Storage Management.

1. Login to the database instance as a user who has been granted the ADM NI STER

KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root. For example:

sql pl us c#fsec_adm n as syskm
Enter password: password
Connect ed.

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the
current PDB, run the show con_name command.

Initialize a target keystore on the file system by using the following syntax:

ADM NI STER KEY MANAGEMENT CREATE KEYSTORE t ar get Keyst orePat h | DENTI FI ED BY
t ar get Keyst or ePasswor d;

In this specification:

* targetKeystorePat h is the directory path to the target keystore on the file
system.

* targetKeystorePassword is a password that you create for the keystore.

For example:

ADM NI STER KEY MANAGEMENT CREATE KEYSTORE '/ et c/ ORACLE/ KEYSTORE/ DB1/' | DENTI FI ED
BY "target Keyst or ePassword";

. Copy the keystore from ASM to the target keystore that you just created.

This step requires that you merge the keystore from ASM to the file system, as
follows:

ADM NI STER KEY MANAGEMENT MERGE KEYSTORE srcKeystorePat h | DENTI FI ED BY
srcKeyst orePassword | NTO EXI STI NG KEYSTORE t ar get Keyst or ePat h | DENTI FI ED BY
tar get Keyst orePassword W TH BACKUP USI NG backupl denti fier;

In this specification:

* srcKeyst or ePat h is the directory path to the source keystore.

4-10 Oracle Database Advanced Security Guide

Managing the Keystore

* srcKeyst or ePasswor d is th source keystore password.
e target Keyst or ePat h is the path to the target keystore.
e target Keyst or ePasswor d is the target keystore password.

e backupl dentifi er is the backup identifier to be added to the backup file
name.

For example:

ADM NI STER KEY MANAGEMENT MERGE KEYSTORE ' +DATAFI LE' | DENTI FI ED BY "srcPassword”
| NTO EXI STI NG KEYSTORE '/ et ¢/ ORACLE/ KEYSTORE/ DB1/' | DENTI FI ED BY
"target Keyst orePassword" W TH BACKUP USI NG "bkup";

4.1.8 Migrating Between a Software Password Keystore and a Hardware Keystore

You can migrate between password-based software keystores and hardware
keystores.

Topics:

Migrating from a Password-Based Software Keystore to a Hardware Keystore
(page 4-11)

Migrating from a Hardware Keystore to a Password-Based Software Keystore
(page 4-14)

Keystore Order After a Migration (page 4-16)

4.1.8.1 Migrating from a Password-Based Software Keystore to a Hardware Keystore

You can migrate from a password-based software keystore to a hardware keystore.

Topics:

Step 1: Convert the Software Keystore to Open with the Hardware Keystore
(page 4-11)

Step 2: Configure sqlnet.ora for the Migration of the Password-Based Software
Keystore (page 4-12)

Step 3: Perform the Hardware Keystore Migration (page 4-13)

4.1.8.1.1 Step 1: Convert the Software Keystore to Open with the Hardware Keystore

Tools such as Oracle Data Pump and Oracle Recovery Manager require access to the
old software keystore to perform decryption and encryption operations on data that
was exported or backed up using the software keystore.

Use the ADM NI STER KEY MANAGEMENT SQL statement to convert a software
keystore to a open with a hardware keystore.

— To set the software keystore password as that of the hardware keystore, use
the following syntax:

ADM NI STER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
| DENTI FI ED BY sof t ware_keyst ore_passwor d
SET "user_id: password" WTH BACKUP [USI NG ' backup_identifier'];

In this specification:

Managing the Keystore and the TDE Master Encryption Key 4-11

Managing the Keystore

sof t war e_keyst or e_passwor d is the same password that you used
when creating the software keystore.

user _i d: passwor d is the new software keystore password which is the
same as the password of the HSM.

W TH BACKUP creates a backup of the software keystore. Optionally, you
can use the USI NGclause to add a brief description of the backup.
Enclose this description in single quotation marks ('). This identifier is
appended to the named keystore file (for example, ewal | et _ti me-

st amp_enp_key_backup. p12, with enp_key_backup being the
backup identifier). Follow the file naming conventions that your
operating system uses.

To create an auto-login keystore for a software keystore, use the following
syntax:

ADM NI STER KEY MANAGEMENT CREATE [LOCAL] AUTO LOG N KEYSTORE
FROM KEYSTORE ' keystore_| ocati on'
| DENTI FI ED BY sof t ware_keyst ore_passwor d;

In this specification:

*

LOCAL enables you to create a local auto-login software keystore.
Otherwise, omit this clause if you want the keystore to be accessible by
other computers.

keyst ore_| ocat i on is the path to the keystore directory location of
the keystore that is configured in the sql net . or a file.

sof t war e_keyst or e_passwor d is the existing password of the
configured software keystore.

4.1.8.1.2 Step 2: Configure sqlnet.ora for the Migration of the Password-Based Software Keystore

After keystore migration, you are ready to open both the software and hardware
keystore operations to enable access to keys created in the software keystore when
required.

For the software keystore to open with the hardware keystore, either the software
keystore must have the same password as the hardware keystore, or alternatively, you
can create an auto-login keystore for the software keystore.

If you are migrating from a software keystore to a hardware keystore, then you must
edit the sgl net . or a file to use the METHOD=HSMsetting.

See Also:

About the Keystore Location in the sqlnet.ora File (page 3-2)

Use the following format in the sqgl net . or a file:

ENCRYPTI ON_WALLET_LCCATI ON=
(SOURCE=(METHOD=HSM (METHOD_DATA=
(DI RECTORY=pat h_t o_keystore)))

pat h_t o_sof t war e_keyst or e is the path to the previously configured
software keystore. Having both HSMand the DI RECTORY location in the

4-12 Oracle Database Advanced Security Guide

Managing the Keystore

ENCRYPTI ON_WALLET_LOCATI ON parameter indicates that you switched
between using the software keystore and the hardware keystore in the past, and it
also enables you to switch back easily in the future.

Note:

If a DI RECTORY value is present in the ENCRYPTI ON_WALLET_LOCATI ON
parameter setting, then ensure that you do not delete it.

Although hardware keystores do not require a DI RECTORY value, Oracle
Database uses this value to locate your software keystore when you migrate to
and from a hardware security module.

Example 4-3 (page 4-13) shows how to edit the sqgl net . or a file to format a software
keystore to hardware security module-based keystore or the reverse:

Example 4-3 Sample ENCRYPTION_WALLET_LOCATION Entries

ENCRYPTI ON_WALLET_LOCATI ON=
(SOURCE=(METHOD=HSM (METHOD_DATA=
(DI RECTORY=/ app/ wal l et)))

4.1.8.1.3 Step 3: Perform the Hardware Keystore Migration

You can use the ADM NI STER KEY MANAGEMENT SQL statement to perform a
hardware keystore migration.

To migrate from the software keystore to hardware keystore, you must use the

M GRATE USI NGkeyst or e_passwor d clause in the ADM NI STER KEY
MANAGEMENT SET KEY SQL statement to decrypt the existing TDE table keys and
the tablespace encryption keys with the TDE master encryption key in the software
keystore and then reencrypt them with the newly created TDE master encryption key
in the hardware keystore.

After you complete the migration, you do not need to restart the database, nor do you
need to manually re-open the hardware keystore. The migration process automatically
reloads the keystore keys in memory.

¢ Use the following syntax when you run the ADM NI STER KEY NMANAGEMENT
SQL statement for migration:

ADM NI STER KEY MANAGEMENT SET ENCRYPTI ON KEY | DENTI FI ED BY "user _i d: password"
M GRATE USI NG sof t war e_keyst ore_password [W TH BACKUP [USI NG
"backup_identifier']];

In this specification:

— user _i d: passwor d is the user ID and password that was created in Step 3
(page 3-12) under Step 2: Configure the Hardware Security Module
(page 3-11) (in Configuring Transparent Data Encryption (page 3-1)). Enclose
this setting in double quotation marks (" ") and separate user _i d and
passwor d with a colon (;).

- software_keyst ore_passwor d is the same password that you used when
creating the software keystore or that you have changed to in Step 1: Convert
the Software Keystore to Open with the Hardware Keystore (page 4-11).

— US| NGenables you to add a brief description of the backup. Enclose this
description in single quotation marks (' '). This identifier is appended to the

Managing the Keystore and the TDE Master Encryption Key 4-13

Managing the Keystore

named keystore file (for example, ewal | et _t i me-

st amp_enp_key_backup. p12, with enp_key_backup being the backup
identifier). Follow the file naming conventions that your operating system
uses.

Note:

If the database contains columns encrypted with a public key, then the
columns are decrypted and reencrypted with an AES symmetric key
generated by HSM-based Transparent Data Encryption.

4.1.8.2 Migrating from a Hardware Keystore to a Password-Based Software Keystore
You can migrate a hardware keystore to a software keystore.

Topics:

¢ About Migrating Back from a Hardware Keystore (page 4-14)

¢ Step 1: Configure sqlnet.ora for the Reverse Migration (page 4-15)

* Step 2: Configure the Keystore for the Reverse for the Reverse Migration
(page 4-15)

® Step 3: Configure the Hardware Keystore to Open with the Software Keystore
(page 4-16)

4.1.8.2.1 About Migrating Back from a Hardware Keystore

If you want to switch from using a hardware keystore solution to a software keystore,
then you can use reverse migration of the keystore.

After you complete the switch, keep the hardware security module, in case earlier
backup files rely on the TDE master encryption keys in the hardware security module.

If you had originally migrated from the software keystore to the hardware security
module and reconfigured the software keystore as described in Migration of a
Previously Configured TDE Master Encryption Key (page 3-15), then you already have
an existing keystore with the same password as the HSM password. Reverse
migration configures this keystore to act as the new software keystore with a new
password. If your existing keystore is an auto-login software keystore and you have
the password-based software keystore for this auto-login keystore, then use the
password-based keystore. If the password-based keystore is not available, then merge
the auto-login keystore into a newly created empty password-based keystore, and use
the newly create password-based keystore.

If you do not have an existing keystore, then you must specify a keystore location in
the sqgl net . or a file using the ENCRYPTI ON_WALLET_LOCATI ON parameter. When
you perform the reverse migration, migrate to the previous keystore so that you do
not lose the keys.

See Also:

Merging Software Keystores (page 4-6)

4-14 Oracle Database Advanced Security Guide

Managing the Keystore

4.1.8.2.2 Step 1: Configure sqinet.ora for the Reverse Migration

First, you must edit the sql net . or a file.

Set the following configuration in the sql net . or a file:

ENCRYPTI ON_WALLET_LOCATI ON=
(SOURCE=(METHOD=FI LE) (METHOD DATA=
(DI RECTORY=pat h_t o_keystore)))

Replace pat h_t o_keyst or e with the directory location of the destination
keystore.

See Also:

About the Keystore Location in the sqlnet.ora File (page 3-2)

4.1.8.2.3 Step 2: Configure the Keystore for the Reverse for the Reverse Migration

To perform a reverse migration on a keystore, you can use the ADM NI STER KEY
MANAGEMENT statement with the SET ENCRYPTI ON KEY and REVERSE M GRATE
clauses.

1.

Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root. For example:

sql pl us c##sec_admin as syskm
Enter password: password
Connect ed.

Run the following SQL statement:

ADM NI STER KEY MANAGEMENT SET ENCRYPTI ON KEY | DENTI FI ED BY
sof t ware_keyst ore_password REVERSE M GRATE USI NG "user _i d: password” [W TH BACKUP
[USING ' backup_identifier']];

In this specification:

e sof tware_keyst ore_passwor d is the password for the existing keystore
or the new keystore.

e user _i d: passwor d is the user ID and password that was created in Step 3
(page 3-12) in Step 2: Configure the Hardware Security Module (page 3-11)
(in Configuring Transparent Data Encryption (page 3-1)). If the pre-hardware
security module software keystore is the new keystore, then you must ensure
that it has the same password as the user _i d: passwor d before issuing the
reverse migration command. Enclose this setting in double quotation marks ("

"),

e W TH BACKUP creates a backup of the software keystore. Optionally, you can
include the USI NGclause to add a brief description of the backup. Enclose
this description in single quotation marks (' '). This identifier is appended to
the named keystore file (for example, ewal | et _t i me-
st amp_enp_key_backup. p12, with enp_key_backup being the backup
identifier). Follow the file naming conventions that your operating system
uses.

Managing the Keystore and the TDE Master Encryption Key 4-15

Managing the Keystore

For example:

ADM NI STER KEY MANAGEMENT SET ENCRYPTI ON KEY | DENTI FI ED BY password REVERSE
M GRATE USI NG "psnith: password" W TH BACKUP;

keystore altered.

3. Optionally, change the keystore password.

See Changing the Password of a Password-Based Software Keystore (page 4-2) for
more information.

4.1.8.2.4 Step 3: Configure the Hardware Keystore to Open with the Software Keystore

After you complete the migration, you do not need to restart the database, nor do you
need to manually re-open the software keystore. The migration process automatically
reloads the keystore keys in memory.

The hardware keystore may still be required after reverse migration because the old
keys are likely to have been used for encrypted backups or by tools such as Oracle
Data Pump and Oracle Recovery Manager. You should cache the hardware keystore
credentials in the keystore so that the HSM can be opened with the software keystore.
See Configuring Auto-Login Hardware Security Modules (page 4-42) for more
information about how to store the HSM credential in a migrated keystore.

4.1.8.3 Keystore Order After a Migration

After you perform a migration, keystores can be either primary or secondary in their
order.

The WALLET_ORDER column of the VEENCRYPTI ON_WALLET dynamic view describes
whether a keystore is primary (that is, it holds the current TDE master encryption key)
or if it is secondary (it holds the previous TDE master encryption key). The WRL_TYPE
column describes the type of locator for the keystore (for example, FI LE for the

sgl net . or a file). The WALLET_ORDER column shows S| NGLE if two keystores are
not configured together and no migration was ever performed previously.

Table 4-1 (page 4-16) describes how the keystore order works after you perform a
migration.

Table 4-1 Keystore Order After a Migration
__|]

Type of Migration WRL_TYPE WALLET_ORDER Description

Done

Migration of software HSM PRI MARY Both the HSM and software keystore are

keystore to HSM Fl LE SECONDARY configured. The TDE master encryption key
can be either in the HSM or the software
keystore.

The TDE master encryption key is first
searched in the HSM.

If the TDE master encryption key is not in
the primary keystore (HSM), then it will be
searched for in the software keystore.

All of the new TDE master encryption keys
will be created in the primary keystore (in
this case, the HSM).

4-16 Oracle Database Advanced Security Guide

Managing the Keystore

Table 4-1 (Cont.) Keystore Order After a Migration

Type of Migration WRL_TYPE WALLET_ORDER Description

Done

Reverse migration of FI LE PRI MARY Both the HSM and software keystore are

HSM to software HSM SECONDARY configured. The TDE master encryption key

keystore can be either in the HSM or the software
keystore.

The TDE master encryption key is first
searched for in the software keystore.

If the TDE master encryption key is not
present in the primary (that is, software)
keystore, then it will be searched for in the
HSM.

All of the new TDE master encryption keys
will be created in the primary keystore (in
this case, the software keystore).

4.1.9 Migration of Keystores to and from Oracle Key Vault

You can use Oracle Key Vault to migrate both software and hardware keystores to and
from Oracle Key Vault. This enables you to manage the keystores centrally, and then
share the keystores as necessary with other TDE-enabled databases in your enterprise.

Oracle Key Vault enables you to upload a keystore to a container called a virtual
wallet, and then create a new virtual wallet from the contents of previously uploaded
Oracle keystores. For example, suppose you previously uploaded a keystore that
contains 5 keys. You can create a new virtual wallet that consists of only 3 of these
keys. You then can download this keystore to another TDE-enabled database. This
process does not modify the original keystore.

In addition to Oracle keystores, Oracle Key Vault enables you to securely share other
security objects, such as credential files and Java keystores, across the enterprise. It
prevents the loss of keys and keystores due to forgotten passwords or accidentally
deleted keystores. You can use Oracle Key Vault with products other than TDE: Oracle
Real Application Security, Oracle Active Data Guard, and Oracle GoldenGate. Oracle
Key Vault facilitates the movement of encrypted data using Oracle Data Pump and
Oracle Transportable Tablespaces.

See Also:

Oracle Key Vault Administrator’s Guide

4.1.10 Closing a Keystore
You can manually close software and hardware keystores.
Topics:
* About Closing Keystores (page 4-18)
¢ C(Closing a Software Keystore (page 4-18)

¢ C(Closing a Hardware Keystore (page 4-19)

Managing the Keystore and the TDE Master Encryption Key 4-17

Managing the Keystore

See Also:
¢ Step 3: Open the Software Keystore (page 3-7)

e Step 3: Open the Hardware Keystore (page 3-12)

4.1.10.1 About Closing Keystores
After you open a keystore, it remains open until you shut down the database instance.

When you restart the database instance, then auto-login and local auto-login software
keystores automatically open when required (that is, when the TDE master encryption
key must be accessed). However, software password-based and hardware keystores
do not automatically open. You must manually open them again before you can use
them.

When you close a software or hardware keystore, you disable all of the encryption and
decryption operations on the database. Hence, a database user or application cannot
perform any operation involving encrypted data until the keystore is reopened.

When you re-open a keystore after closing it, the keystore contents are reloaded back
into the database. Thus, if the contents had been modified (such as during a
migration), the database will have the latest keystore contents.

You can check the status of a keystore, whether it is open or closed, by querying the
STATUS column of the VSENCRYPTI ON_WALLET view.

The following data operations will fail if the keystore is not accessible:
¢ SELECT data from an encrypted column

* | NSERT data into on an encrypted column

¢ CREATE a table with encrypted columns

* CREATE an encrypted tablespace

See Also:

"How Open and Close Operations for a Keystore Work in a Multitenant
Environment (page 6-14)"

4.1.10.2 Closing a Software Keystore

You can manually close password-based software keystores, auto-login software
keystores, and local auto-login software keystores.

In the case of an auto-login keystore, which opens automatically when it is accessed,
manually close it if you moved it to a new location. You do this if you are changing
your configuration from an auto-login keystore to a password-based keystore: you
move out the auto-login keystore, and then close the auto-login keystore.

1. Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, you must close the keystore first in the root.
Afterward, all keystores in the PDBs will close as well. For example, to log in to
the root:

4-18 Oracle Database Advanced Security Guide

Managing the Keystore

sql plus sec_admn as syskm
Enter password: password
Connect ed.

To find the available PDBs, query the DBA_PDBS data dictionary view. To check
the current PDB, run the show con_namnme command.

Run the ADM NI STER KEY MANAGEMENT SQL statement.

¢ For a password-based software keystore, use the following syntax:

ADM NI STER KEY MANAGEMENT SET KEYSTORE CLCSE [DENTI FI ED BY
sof tware_keyst ore_password] [CONTAINER = ALL | CURRENT];

In this specification:

- sof tware_keyst or e_passwor d is the password of the user who
created the keystore.

— CONTAI NERis for use in a multitenant environment. Enter ALL to close
the keystore in all of the PDBs in this multitenant container database
(CDB), or CURRENT for the current PDB. If you run this ADM NI STER
KEY NMANAGEMENT statement in the root, then all of the keystores on all
of the PDBs will close, irrespective of whether CONTAI NER s set to ALL
or to CURRENT.

e For an auto-login or local auto-login software keystore, use the following SQL
statement:

ADM NI STER KEY MANAGEMENT SET KEYSTORE CLOSE;

You do not need to specify a password for this statement.

Closing a keystore disables all of the encryption and decryption operations. Any
attempt to encrypt or decrypt data or access encrypted data results in an error.

See Also:

"Step 3: Open the Software Keystore (page 3-7)"

4.1.10.3 Closing a Hardware Keystore

To close a hardware keystore, you must use the ADM NI STER KEY MANAGEMENT
statement with the SET KEYSTORE CLOSE clause.

1.

Log into the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root. For example:

sql pl us c##sec_admin as syskm
Enter password: password
Connect ed.

Run the following SQL statement:

ADM NI STER KEY MANAGEMENT SET KEYSTORE CLOSE | DENTI FI ED BY "user i d: passwor d"
[CONTAI NER = ALL | CURRENT];

In this specification:

Managing the Keystore and the TDE Master Encryption Key 4-19

Managing the Keystore

e user_i d: passwor d is the user ID and password that was created in Step 3
(page 3-12) in "Step 2: Configure the Hardware Security Module (page 3-11)".
Enclose this setting in double quotation marks (" ") and separate user _i d
and passwor d with a colon (:).

* CONTAI NERis for use in a multitenant environment. Enter ALL to close the
keystore in all of the PDBs in this CDB, or CURRENT for the current PDB. If
you run this ADM NI STER KEY MANAGEMENT statement in the root, then all
of the keystores on all of the PDBs will close, irrespective of whether
CONTAI NERis set to ALL or to CURRENT.

For example:

ADM NI STER KEY MANAGEMENT SET KEYSTORE CLOSE | DENTIFI ED BY "psnith: password”;

See Also:

"Step 3: Open the Hardware Keystore (page 3-12)"

4.1.11 Using a Software Keystore That Resides on ASM Volumes

You can store a software keystore on an Automatic Storage Management (ASM) disk
group.

e Edit the sql net . or a file to use the location of an ASM disk group specified
using the ASM file naming convention when you configure the DI RECTORY
setting in the ENCRYPTI ON_WALLET_LOCATI ONsetting. That is, you must use the
plus sign (+) notation for the ASM file name.

For example:

ENCRYPTI ON WALLET _LOCATI ON=
(SOURCE=(METHOD=FI LE) (METHOD_DATA=
(DI RECTORY=+di sk1/ nydb/ val | et)))

If you must move or merge software keystores between a regular file system and an
ASM file system, then you can use the same keystore merge statements described in
"Merging Software Keystores (page 4-6)".

To manage keystores in an ASM environment, you can use the ASMCVD utility.

See Also:

¢ Configuring the sqlnet.ora File for a Software Keystore Location
(page 3-3)

® Oracle Database Storage Administrator’s Guide for detailed information
about using the ASMCVD utility

4.1.12 Backup and Recovery of Encrypted Data

For software keystores, you cannot access encrypted data without the TDE master
encryption key.

Because the TDE master encryption key is stored in the keystore, you should
periodically back up the software keystore in a secure location. You must back up a

4-20 Oracle Database Advanced Security Guide

Managing the Keystore

copy of the keystore whenever you set a new TDE master encryption key or perform
any operation that writes to the keystore.

Do not back up the software keystore in the same location as the encrypted data. Back
up the software keystore separately. This is especially true when you use the auto-
login keystore, which does not require a password to open. In case the backup tape is
lost, a malicious user should not be able to get both the encrypted data and the
keystore.

Oracle Recovery Manager (Oracle RMAN) does not back up the software keystore as
part of the database backup. When using a media manager such as Oracle Secure
Backup with Oracle RMAN, Oracle Secure Backup automatically excludes auto-open
keystores (the cwal | et . sso files). However, it does not automatically exclude
encryption keystores (the ewal | et . p12 files). It is a good practice to add the
following excl ude data set statement to your Oracle Secure Backup configuration:

excl ude nane *.pl2

This setting instructs Oracle Secure Backup to exclude the encryption keystore from
the backup set.

If you lose the software keystore that stores the TDE master encryption key, then you
can restore access to encrypted data by copying the backed-up version of the keystore
to the appropriate location. If you archived the restored keystore after the last time
that you reset the TDE master encryption key, then you do not need to take any
additional action.

If the restored software keystore does not contain the most recent TDE master
encryption key, then you can recover old data up to the point when the TDE master
encryption key was reset by rolling back the state of the database to that point in time.
All of the modifications to encrypted columns after the TDE master encryption key
was reset are lost.

See Also:

Oracle Database Backup and Recovery User’s Guide for information about
recovering a database

4.1.13 Deletion of Keystores

Oracle strongly recommends that you do not delete keystores, particularly after you
have configured Transparent Data Encryption and the keystore is in use.

You can find if a keystore is in use by querying the WRL_ PARAMETER column of the V
$SENCRYPTI ON_WALLET view after you open the keystore.

The reason you should not delete a keystore is because the keystore contains a list of
all of the keys that were used for the database. Deleting the keystore deletes these
keys, and could result in the loss of encrypted data. The deletion of a keystore can
even hamper the normal functioning of the Oracle database. Even if you decrypted all
of the data in your database, you still should not delete the keystore, because the TDE
master encryption key in the keystore is also used for other Oracle Database features,
such as off-lined tablespaces, Oracle Recovery Manager, and Oracle Secure Backup.

Even after you have migrated your keystores to a hardware security module, you
should not delete the original keystore. The keys in the original keystore will be
needed at a later time, for example when recovering an offline encrypted tablespace.
Even if there is no data online that are not encrypted, the key may still be in use.

Managing the Keystore and the TDE Master Encryption Key 4-21

Managing the TDE Master Encryption Key

The exception is in the case of software auto-login (or auto-login local) keystores. If
you do not want to use this type of keystore, then ideally you should move it to a
secure directory. Only delete an auto-login keystore if you are sure that it comes from
a specific password-based software keystore and that this keystore is available. The
keystore should be available and known.

4.2 Managing the TDE Master Encryption Key

You can manage the TDE master encryption key in several ways.
Topics:

¢ Creating TDE Master Encryption Keys for Later Use (page 4-22)
e Activation of TDE Master Encryption Keys (page 4-24)

¢ TDE Master Encryption Key Attribute Management (page 4-26)

® Creating Custom TDE Master Encryption Key Attributes for Reporting Purposes
(page 4-28)

* Setting and Resetting the TDE Master Encryption Key in the Keystore (page 4-29)
* Exporting and Importing the TDE Master Encryption Key (page 4-33)

¢ Management of TDE Master Encryption Keys Using Oracle Key Vault
(page 4-38)

4.2.1 Creating TDE Master Encryption Keys for Later Use
You can create a TDE master encryption key that can be activated at a later date.
Topics:
¢ About Creating a TDE Master Encryption Key for Later Use (page 4-22)
e Creating a TDE Master Encryption Key for Later Use (page 4-23)

e Example: Creating a TDE Master Encryption Key in a Single Database
(page 4-23)

e Example: Creating a TDE Master Encryption Key in All PDBs (page 4-24)

4.2.1.1 About Creating a TDE Master Encryption Key for Later Use

The CREATE KEY clause of the ADM NI STER KEY MANAGEMENT statement can create
a TDE master encryption key to be activated at a later date.

You then can activate this key on the same database or export it to another database
and activate it there.

This method of TDE master encryption key creation is useful in a multitenant
environment when you must re-create the TDE master encryption keys. The CREATE
KEY clause enables you to use a single SQL statement to generate a new TDE master
encryption key for all of the PDBs within a multitenant environment. The creation
time of the new TDE master encryption key is later than the activation of the TDE
master encryption key that is currently in use. Hence, the creation time can serve as a
reminder to all of the PDBs to activate the most recently created TDE master
encryption key as soon as possible.

4-22 Oracle Database Advanced Security Guide

Managing the TDE Master Encryption Key

4.2.1.2 Creating a TDE Master Encryption Key for Later Use

A keystore must be opened before you can create a TDE master encryption key for use
later on.

1.

4.

Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root. For example:

sql pl us c##tsec_adnmin as syskm
Enter password: password
Connect ed.

Ensure that the keystore is open.

You can query the STATUS column of the VSENCRYPTI ON_WALLET view to find if
the keystore is open. If you find that you must open the keystore, then see the
following sections:

¢ Step 3: Open the Software Keystore (page 3-7)
* Step 3: Open the Hardware Keystore (page 3-12)

Run the following SQL statement:

ADM NI STER KEY MANAGEMENT CREATE KEY [USI NG TAG 'tag'] |DENTIFI ED BY
keyst ore_password [W TH BACKUP [USI NG ' backup_i dentifier']] [CONTAINER = (ALL|
CURRENT)] ;

In this specification:

¢ tag is the associated attribute and information that you define. Enclose this
setting in single quotation marks (').

e keystore_password is the mandatory keystore password that you used
when you created the original keystore. It is case sensitive.

e W TH BACKUP backs up the TDE master encryption key in the same location
as the key, as identified by the WRL_ PARAMETER column of the V
$ENCRYPTI ON_WALLET view. To find the key locations for all of the database
instances, query the GV$ENCRYPTI ON_WALLET view.

You must back up password-based software keystores. You do not need to
back up auto-login or local auto-login software keystores. Optionally, include
the USI NGbackup_i denti fi er clause to add a description of the backup.
Enclose backup_i denti fi er insingle quotation marks (' ').

e CONTAI NERIis for use in a multitenant environment. Enter ALL to set the
encryption key in all of the PDBs in this CDB, or CURRENT for the current
PDB.

If necessary, activate the TDE master encryption key.

See Activation of TDE Master Encryption Keys (page 4-24).

4.2.1.3 Example: Creating a TDE Master Encryption Key in a Single Database

You can use the ADM NI STER KEY MANAGEMENT CREATE KEY USI NG TAG
statement to create a TDE master encryption key in a single database.

Managing the Keystore and the TDE Master Encryption Key 4-23

Managing the TDE Master Encryption Key

Example 4-4 (page 4-24) shows how to create a TDE master encryption key in a single
database. After you run this statement, a TDE master encryption key with the tag
definition is created in the keystore for that database. You can query the TAGcolumn
of the VSENCRYPTI ON_KEYS view for the identifier of the newly created key. You can
query the CREATI ON_TI ME column to find the most recently created key, which
would be the key that you created from this statement. You can export this key to
another database if you want or activate it locally later on, as described in Activation
of TDE Master Encryption Keys (page 4-24).

Example 4-4 Creating a TDE Master Encryption Key in a Single Database

ADM NI STER KEY MANAGEMENT CREATE KEY USI NG TAG
"source: adm n@ource;target:dbl@arget'
| DENTI FI ED BY password W TH BACKUP;

keystore altered.

4.2.1.4 Example: Creating a TDE Master Encryption Key in All PDBs

The ADM NI STER KEY MANAGEMENT CREATE KEY USI NG TAGSQL statement
creates a TDE master encryption key in all PDBs.

Example 4-5 (page 4-24) shows how to create a TDE master encryption key in all of
the PDBs in a multitenant environment. After you run this statement, a TDE master
encryption key is created in each PDB. You can find the identifiers for these keys as
follows:

¢ Login to the PDB and then query the TAGcolumn of the VSENCRYPTI ON_KEYS
view.

* Login to the root and then query the | NST_| Dand TAG columns of the GV
$ENCRYPTI ON_KEYS view.

You also can check the CREATI ON_TI ME column of these views to find the most
recently created key, which would be the key that you created from this statement.
After you create the keys, you can individually activate the keys in each of the PDBs.

Example 4-5 Creating a TDE Master Encryption Key in All of the PDBs

ADM NI STER KEY MANAGEMENT CREATE KEY USI NG TAG
"scope: al | pdbs; description: Create Key for ALL PDBS'
| DENTI FI ED BY password W TH BACKUP CONTAI NER=ALL;

keystore al tered.

4.2.2 Activation of TDE Master Encryption Keys
After you activate a TDE master encryption key, it can be used.
Topics:
* About Activating TDE Master Encryption Keys (page 4-24)
* Activating a TDE Master Encryption Key (page 4-25)

e Example: Activating a TDE Master Encryption Key (page 4-26)

4.2.2.1 About Activating TDE Master Encryption Keys

You can activate a previously created or imported TDE master encryption key by
using the USE KEY clause of ADM NSTER KEY MANAGEMENT.

4-24 Oracle Database Advanced Security Guide

Managing the TDE Master Encryption Key

After you activate the key, it is available for use. The key will be used to protect all of
the column keys and all of the tablespace encryption keys. If you have deployed a
logical standby database, then you must export the TDE master encryption keys after
recreating them, and then import them into the standby database. You can have the
TDE master encryption key in use on both the primary and the standby databases. To
do so, you must activate the TDE master encryption key after you import it to the
logical standby database.

4.2.2.2 Activating a TDE Master Encryption Key

To activate a TDE master encryption key, you must open the keystore and use
ADM NI STER KEY MANAGEMENT with the USE KEY clause.

1.

Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root. For example:

sql pl us c##sec_admin as syskm
Enter password: password
Connect ed.

Ensure that the keystore is open.

You can query the STATUS column of the VSENCRYPTI ON_WALLET view to find if
the keystore is open. If you find that you must open the keystore, see the
following sections:

* Step 3: Open the Software Keystore (page 3-7)
¢ Step 3: Open the Hardware Keystore (page 3-12)

Query the KEY_| D column of the VEENCRYPTI ON_KEYS view to find the key
identifier.

For example:

SELECT KEY_I D FROM VSENCRYPTI ON_KEYS;

ARaHD762t UkkvyLgPz Ai 6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Run the following SQL statement:

ADM NI STER KEY MANAGEMENT USE KEY ' key_identifier' [USING TAG 'tag']
| DENTI FI ED BY keystore_password [W TH BACKUP [USI NG ' backup_i dentifier']];

In this specification:

e key_identifier isthe key identifier that you find from querying the
KEY_I D column of the VBENCRYPTI ON_KEYS view. Enclose this setting in
single quotation marks (' ').

* tag is the associated attributes and information that you define. Enclose this
setting in single quotation marks (').

e keystore_password is the mandatory keystore password that you used
when you created the original keystore.

e W TH BACKUP backs up the TDE master encryption key in the same location
as the key, as identified by the WRL_ PARAMETER column of the V

Managing the Keystore and the TDE Master Encryption Key 4-25

Managing the TDE Master Encryption Key

$ENCRYPTI ON_WALLET view. To find the key locations for all of the database
instances, query the GV$ENCRYPTI ON_WALLET view.

You must back up password-based software keystores. You do not need to
back up auto-login or local auto-login software keystores. Optionally, include
the USI NGbackup_i denti fi er clause to add a description of the backup.
Enclose backup_i denti fi er in single quotation marks (' ').

e CONTAI NERis for use in a multitenant environment. Enter ALL to set the
encryption key in all of the PDBs in this CDB, or CURRENT for the current
PDB.

4.2.2.3 Example: Activating a TDE Master Encryption Key

You can use the ADM NI STER KEY MANAGEMENT SQL statement to activate a TDE
master encryption key.

Example 4-6 (page 4-26) shows how to activate a previously imported TDE master
encryption key and then update its tag. This key is activated with the current database
time stamp and time zone.

Example 4-6 Activating a TDE Master Encryption Key

ADM NI STER KEY MANAGEMENT USE KEY

' ARaHD762t UkkvyLgPz Ai 6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

USI NG TAG ' quarter:second; description: Activate Key on standby'
| DENTI FI ED BY password W TH BACKUP;

keystore al tered.

4.2.3 TDE Master Encryption Key Attribute Management
Master encryption key attributes store information about the TDE master encryption
key.
Topics:
¢ TDE Master Encryption Key Attributes (page 4-26)

¢ Finding the TDE Master Encryption Key That Is in Use (page 4-27)

4.2.3.1 TDE Master Encryption Key Attributes

Master encryption key attributes include detailed information about the TDE master
encryption key.

The information contains the following types:

¢ Key time stamp information: Internal security policies and compliance policies
usually determine the key rotation frequency. You should expire keys when they
reach the end of their lifetimes and then generate new keys. Time stamp attributes
such as key creation time and activation time help you to determine the key age
accurately, and automate key generation.

The V$ENCRYPTI ON_KEYS view includes columns such as CREATI ON_TI ME and
ACTI VATI ON_TI ME. See Oracle Database Reference for a complete description of
the VSENCRYPTI ON_KEYS view.

¢ Key owner information: Key owner attributes help you to determine the user
who created or activated the key. These attributes can be important for security,

4-26 Oracle Database Advanced Security Guide

Managing the TDE Master Encryption Key

auditing, and tracking purposes. Key owner attributes also include key use
information, such as whether the key is used for standalone TDE operations or
used in a multitenant environment.

The VSENCRYPTI ON_KEYS view includes columns such as CREATOR,
CREATOR | D, USER, USER I D, and KEY_USE.

* Key source information: Keys often must be moved between databases for
operations such as import-export operations and Data Guard-related operations.
Key source attributes enable you to track the origin of each key. You can track
whether a key was created locally or imported, and the database name and
instance number of the database that created the key. In a multitenant
environment, you can track the PDB where the key was created.

The VSENCRYPTI ON_KEYS view includes columns such as CREATOR_DBNANE,
CREATOR DBI D, CREATOR | NSTANCE NANME,
CREATOR | NSTANCE_NUMBER, CREATOR _PDBNAME, and so on.

¢ Key usage information: Key usage information determines the database or PDB
where the key is being used. It also helps determine whether a key is in active use
or not.

The VSENCRYPTI ON_KEYS view includes columns such as
ACTI VATI NG_DBNAME, ACTI VATI NG_DBI D,
ACTI VATI NG_| NSTANCE_NAME, ACTI VATI NG_PDBNAME, and so on.

¢ User-defined information and other information: When creating a key, you can
tag it with information using the TAG option. Each key contains important
information such as whether or not it has been backed up.

The VSENCRYPTI ON_KEYS view includes columns such as KEY | D, TAG, and
other miscellaneous columns, for example BACKED_UP.

4.2.3.2 Finding the TDE Master Encryption Key That Is in Use

A TDE master encryption key that is in use is the key that was activated most recently
for the database.

In a multitenant environment, the master key in use of the PDB is the one that was
activated most recently for that PDB.

* To find the master key, query the VSENCRYPTI ON_KEYS dynamic view.

— To find the master key in use in a non-CDB:

SELECT KEY_ID
FROM VSENCRYPTI ON_KEYS
WHERE ACTI VATI ON_TI ME = (SELECT MAX(ACTI VATI ON_TI ME)

FROM VSENCRYPTI ON_KEYS

WHERE ACTI VATI NG DBI D = (SELECT DBID FROM V
$DATABASE)) ;

— To find the master key in use in a CDB:

SELECT KEY_ID
FROM VSENCRYPTI ON_KEYS
WHERE ACTI VATI ON_TI ME = (SELECT MAX(ACTI VATI ON_TI ME)
FROM VSENCRYPTI ON_KEYS
WHERE ACTI VATI NG_PDBI D = SYS_CONTEXT(' USERENV',
"CONID));

Managing the Keystore and the TDE Master Encryption Key 4-27

Managing the TDE Master Encryption Key

4.2.4 Creating Custom TDE Master Encryption Key Attributes for Reporting Purposes

Custom TDE master encryption key attributes enable you to defined attributes that are
specific to your needs.

Topics:
e About Creating Custom Attribute Tags (page 4-28)

* Creating a Custom Attribute Tag (page 4-28)

4.2.4.1 About Creating Custom Attribute Tags

Attribute tags enable you to monitor specific activities users perform, such as
accessing a particular terminal ID.

By default, Oracle Database defines a set of attributes that describe various
characteristics of the TDE master encryption keys that you create, such as the creation
time, database in which the TDE master encryption key is used, and so on. These
attributes are captured by the VSENCRYPTI ON_KEY dynamic view.

You can create custom attributes that can be captured by the TAG column of the V

$ENCRYPTI ON_KEYS dynamic view. This enables you to define behaviors that you
may want to monitor, such as users who perform activities on encryption keys. The
tag can encompass multiple attributes, such as session IDs from a specific terminal.

4.2.4.2 Creating a Custom Attribute Tag

To create a custom attribute tag, you must use the SET TAGclause of the
ADM NI STER KEY NMANAGEMENT statement.

1. Login to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root. For example:

sql pl us c##sec_admin as syskm
Enter password: password
Connect ed.

2. Ifnecessary, query the TAGcolumn of the VSENCRYPTI ON_KEY dynamic view to
find a listing of existing tags for the TDE master encryption keys.

When you create a new tag for a TDE master encryption key, it overwrites the
existing tag for that TDE master encryption key.

3. Create the tag as follows:

ADM NI STER KEY MANAGEMENT SET TAG 'tag’ FOR 'master_key identifier'
| DENTI FI ED BY keyst ore_password
[WTH BACKUP [USI NG ' backup_identifier']];

In this specification

e tag isthe associated attributes or information that you define. Enclose this
information in single quotation marks (').

e nmaster_key_identifier identifies the TDE master encryption key for
which the t ag is set. To find a list of TDE master encryption key identifiers,
query the KEY_I| D column of the VSENCRYPTI ON_KEYS dynamic view.

4-28 Oracle Database Advanced Security Guide

Managing the TDE Master Encryption Key

* keystore_password is the password that was used to create the keystore.

* backup_identifier defines the tag values. Enclose this setting in single
quotation marks (' ') and separate each value with a colon.

For example, to create a tag that uses two values, one to capture a specific session
ID and the second to capture a specific terminal ID:

ADM NI STER KEY MANAGEMENT SET ENCRYPTI ON KEY USI NG TAG
' sessi oni d=3205062574: t er m nal =xcvt'
| DENTI FI ED BY keyst ore_password W TH BACKUP;

keystore altered.

Both the session ID (3205062574) and terminal ID (xcvt) can derive their values
by using either the SYS_CONTEXT function with the USERENV namespace, or by
using the USERENV function. For a full list of predefined parameters for the
USERENV namespace in the SYS_CONTEXT function, see Oracle Database SQL
Language Reference.

After you create the tag for a TDE master encryption key, its name should appear in
the TAG column of the VEENCRYPTI ON_KEYS view for that TDE master encryption
key. If you create a tag for the secret, then the tag appears in the SECRET_TAG column
of the VSCLI ENT_SECRETS view. If you create a secret with a tag, then the tag
appears in the SECRET_TAG column of the V$CL| ENT_SECRETS view.

See Also:

Storing Oracle GoldenGate Secrets in a Keystore (page 4-44) for information
about creating secrets

4.2.5 Setting and Resetting the TDE Master Encryption Key in the Keystore

You can set and reset the TDE master encryption key for both software keystores and
hardware keystores.

Topics:

* About Setting or Rotating the TDE Master Encryption Key in the Keystore
(page 4-29)

¢ Creating and Backing Up a TDE Master Encryption Key and Applying a Tag to It
(page 4-30)

* About Rotating the TDE Master Encryption Key (page 4-31)

* Rotating the TDE Master Encryption Key (page 4-31)

4.2.5.1 About Setting or Rotating the TDE Master Encryption Key in the Keystore

You can set or rotate the TDE master encryption key for both software password-
based and hardware keystores.

The TDE master encryption key is stored in an external security module (keystore),
and it is used to protect the TDE table keys and tablespace encryption keys. By
default, the TDE master encryption key is a system-generated random value created
by Transparent Data Encryption (TDE).

Managing the Keystore and the TDE Master Encryption Key 4-29

Managing the TDE Master Encryption Key

Use the ADM NI STER KEY MANAGEMENT statement to set or reset (REKEY) the TDE
master encryption key. When the master encryption key is set, then TDE is considered
enabled and cannot be disabled.

Before you can encrypt or decrypt database columns or tablespaces, you must
generate a TDE master encryption key. Oracle Database uses the same TDE master
encryption key for both TDE column encryption and TDE tablespace encryption. The
following sections explain how to create a basic TDE master encryption key:

* Master encryption key for software keystores: Step 4: Set the Software TDE
Master Encryption Key (page 3-8)

* Master encryption key for hardware keystores: Step 4: Set the Hardware
Keystore TDE Master Encryption Key (page 3-14)

4.2.5.2 Creating and Backing Up a TDE Master Encryption Key and Applying a Tag to
It

The ADM NI STER KEY MANAGEMENT statement enables you to create and back up a
TDE master encryption key and apply a tag to it.

1. Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root or to the PDB. For example:

sql pl us sec_adm n@rpdb as syskm
Enter password: password
Connect ed.

To find the available PDBs, query the DBA_PDBS data dictionary view. To check
the current PDB, run the show con_nane command.

2. Run the following SQL statement:

ADM NI STER KEY MANAGEMENT SET ENCRYPTI ON KEY [USING TAG 'tag']
| DENTI FI ED BY keystore_password W TH BACKUP
[USING ' backup_identifier'] [CONTAINER = ALL | CURRENT];

In this specification:

¢ tag is the tag that you want to create. Enclose this tag in single quotation
marks (''). (See Creating Custom TDE Master Encryption Key Attributes for
Reporting Purposes (page 4-28) for more information about tags.)

e keystore_password is either sof t war e_keyst or e_password or
user _i d: passwor d. The user _i d: passwor d setting is the hardware
keystore user ID and password that was created in Step 3 (page 3-12) under
Step 2: Configure the Hardware Security Module (page 3-11). As with
software passwords, it is case sensitive. You must enclose the password string
in double quotation marks (" "). Separate user _i d and passwor d with a
colon (2).

e W TH BACKUP backs the TDE master encryption key up in the same location
as the key, as identified by the WRL_ PARAMETER column of the V
$ENCRYPTI ON_WALLET view. To find the WRL_ PARAMETER values for all of
the database instances, query the GV$ENCRYPTI ON_WALLET view.

You must back up password-based software keystores. You do not need to
use it for auto-login or local auto-login software keystores. Optionally,

4-30 Oracle Database Advanced Security Guide

Managing the TDE Master Encryption Key

include the USI NGbackup_i denti fi er clause to add a description of the
backup. Enclose this identifier in single quotation marks (').

e CONTAI NERis for use in a multitenant environment. Enter ALL to set the
encryption key in all of the PDBs in this CDB, or CURRENT for the current
PDB.

For example:

ADM NI STER KEY MANAGEMENT SET ENCRYPTI ON KEY USI NG TAG ' backups"
| DENTI FI ED BY password W TH BACKUP USI NG ' hr. enp_key_backup';

keystore altered.

Oracle Database uses the keystore in the keystore location specified by the
ENCRYPTI ON_WALLET_LOCATI ON parameter in the sqgl net . or a file to store the
TDE master encryption key. See About the Keystore Location in the sqlnet.ora File
(page 3-2) for information about how the ENCRYPTI ON_WALLET_LOCATI ON
parameter works in the sql net . or a file.

4.2.5.3 About Rotating the TDE Master Encryption Key

Oracle Database uses a unified master encryption key for both TDE column
encryption and TDE tablespace encryption.

When you rotate (also called rekeying) the TDE master encryption key for TDE
column encryption, the master encryption key for TDE tablespace encryption also is
rotated. Rotate the master encryption key only if it was compromised or as per the
security policies of the organization. This process deactivates the previous TDE master
encryption key.

You cannot change the TDE master encryption key or rotate a TDE master encryption
key for an auto-login keystore. Because auto-login keystores do not have a password,
an administrator or a privileged user can change the keys without the knowledge of
the security officer. However, if both the auto-login and the password-based keystores
are present in the configured location (as set in the sql net . or a file), then when you
rotate the TDE master encryption key, a TDE master encryption key is added to both
the auto-login and password-based keystores. If the auto-login keystore is in use in a
location that is different from that of the password-based keystore, then you must re-
create the auto-login keystore.

Note:

You cannot add new information to auto-login keystores separately.

4.2.5.4 Rotating the TDE Master Encryption Key

You can use the ADM NI STER KEY MANAGEMENT statement to rotate (also called
rekeying) a TDE master encryption key.

1. Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root or to the PDB. For example, to log
in to a PDB called hr pdb:

sql pl us sec_admi n@rpdb as syskm

Enter password: password
Connect ed.

Managing the Keystore and the TDE Master Encryption Key 4-31

Managing the TDE Master Encryption Key

To find the available PDBs, query the DBA_PDBS data dictionary view. To check
the current PDB, run the show con_namnme command.

2. Ensure that the keystore is open.

Query the STATUS column of the VEENCRYPTI ON_WALLET view to find if the
keystore is open. If the keystore is closed, then see the following sections for
information about opening it:

¢ Step 3: Open the Software Keystore (page 3-7)
* Step 3: Open the Hardware Keystore (page 3-12)

3. If you are rotating the TDE master encryption key for a keystore that has auto
login enabled, then ensure that both the auto login keystore, identified by
the . sso file, and the encryption keystore, identified by the . p12 file, are present.

You can find the location of these files by querying the WRL_ PARAMETER column
of the VSENCRYPTI ON_WALLET view. To find the WRL_ PARAMETER values for all
of the database instances, query the GV$ENCRYPTI ON_WALLET view.

4. Rotate the TDE master encryption key by using the following statement:

ADM NI STER KEY MANAGEMENT SET ENCRYPTI ON KEY [USI NG TAG 'tag'] | DENTIFIED BY
keyst ore_password W TH BACKUP [USI NG ' backup_identifier'] [CONTAINER = ALL |
CURRENT] ;

In this specification:

¢ tag is the associated attributes and information that you define. Enclose this
setting in single quotation marks (').

e Kkeystore_password is the mandatory keystore password that you created
when you created the keystore in Step 2: Create the Software Keystore

(page 3-4).

e W TH BACKUP creates a backup of the keystore. You must use this option for
password-based and hardware keystores. Optionally, you can use the USI NG
clause to add a brief description of the backup. Enclose this description in
single quotation marks ('). This identifier is appended to the named keystore
file (for example, ewal | et _ti me- st anp_enp_key_backup. p12). Follow
the file naming conventions that your operating system uses.

e CONTAI NERis for use in a multitenant environment. Enter ALL to open the
keystore in all of the PDBs in this CDB, or CURRENT for the current PDB.

For example:

ADM NI STER KEY MANAGEMENT SET KEY | DENTI FI ED BY password W TH BACKUP USI NG
"enp_key_backup';

keystore altered.

For better security and to meet compliance regulations, periodically rotate the TDE
master encryption key. This process deactivates the previous TDE master encryption
key, creates a new TDE master encryption key, and then activates it. You can check the
keys that were created recently by querying the CREATI ON_TI ME column in the V
$ENCRYPTI ON_KEYS view. To find the keys that were activated recently, query the
ACTI VATI ON_TI ME column in the VSENCRYPTI ON_KEYS view.

4-32 Oracle Database Advanced Security Guide

Managing the TDE Master Encryption Key

4.2.6 Exporting and Importing the TDE Master Encryption Key

You can export and import the TDE master encryption key in a variety ways, to satisfy
the needs of other Oracle features, such as a multitenant environment or Oracle Data
Guard.

Topics:

* About Exporting and Importing the TDE Master Encryption Key (page 4-33)
¢ About Exporting TDE Master Encryption Keys (page 4-33)

* Exporting a TDE Master Encryption Key (page 4-34)

¢ Example: Exporting a TDE Master Encryption Key by Using a Subquery
(page 4-35)

e Example: Exporting a List of TDE Master Encryption Key Identifiers to a File
(page 4-35)

¢ Example: Exporting All TDE Master Encryption Keys of the Database (page 4-35)
e About Importing TDE Master Encryption Keys (page 4-36)

e Importing a TDE Master Encryption Key (page 4-36)

e Example: Importing a TDE Master Encryption Key (page 4-37)

¢ How Keystore Merge Differs from TDE Master Encryption Key Export or Import
(page 4-37)

See Also:

Using Oracle Data Pump to Encrypt Entire Dump Sets (page 6-3)

4.2.6.1 About Exporting and Importing the TDE Master Encryption Key

Oracle Database features such as transportable tablespaces and Oracle Data Pump
move data that is possibly encrypted between databases.

In addition, CDBs contain PDBs that can be plugged in or unplugged. These are some
common scenarios in which you can choose to export and import TDE master
encryption keys to move them between source and target keystores. For Data Guard
(Logical Standby), you must copy the keystore that is in the primary database to the
standby database. Instead of merging the primary database keystore with the standby
database, you can export the TDE master encryption key that is in use and then import
it to the standby database. Moving transportable tablespaces that are encrypted
between databases requires that you export the TDE master encryption key at the
source database and then import it into the target database.

4.2.6.2 About Exporting TDE Master Encryption Keys

You can use ADM NI STER KEY MANAGEMENT EXPORT to export TDE master
encryption keys from a keystore, and then import them into another keystore.

A TDE master encryption key is exported together with its key identifier and key
attributes. The exported keys are protected with a password (secret) in the export file.

Managing the Keystore and the TDE Master Encryption Key 4-33

Managing the TDE Master Encryption Key

You can specify the TDE master encryption keys to be exported by using the W TH

| DENTI FI ER clause of the ADM NSI TER KEY MANAGENT EXPORT statement. To
export the TDE master encryption keys, you can either specify their key identifiers as a
comma-separated list, or you can specify a query that enumerates their key identifiers.
Be aware that Oracle Database executes the query determining the key identifiers
within the current user's rights and not with definer's rights.

If you omit the W TH | DENTI FER clause, then all of the TDE master encryption keys
of the database are exported.

In a consolidated database, you can export the keys from within a PDB for a PDB to be
unplugged. In this scenario, you can only use the W TH | DENTI FI ER clause in the
root and not in a PDB. See Exporting and Importing TDE Master Encryption Keys for a
PDB (page 6-10) for information about exporting keys in a PDB.

To export a set of TDE master encryption keys:

See Also:

Exporting and Importing TDE Master Encryption Keys for a PDB (page 6-10)
for an example of using this statement in a multitenant environment

4.2.6.3 Exporting a TDE Master Encryption Key

The ADM NI STER KEY MANAGEMENT statement with the EXPORT [ENCRYPTI ON|

KEYS W TH SECRET clause exports a TDE master encryption key.

1. Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root. For example:

sql pl us c##sec_admin as syskm
Enter password: password
Connect ed.

2. Ifnecessary, open the keystore.

See Step 3: Open the Software Keystore (page 3-7) for information about opening a
keystore.

3. Run the following SQL statement to export a set of TDE master encryption keys:

ADM NI STER KEY MANAGEMENT EXPORT [ENCRYPTI ON] KEYS
W TH SECRET "export_secret"
TO 'file_path' |DENTIFIED BY software_keystore_password
[WTH IDENTIFIER IN "key_idl', 'key_id2', 'key_idn' | (SQL_query)];

In this specification:

* export_secret isapassword that you can specify to encrypt the export the
file that contains the exported keys. Enclose this secret in double quotation
marks (" "), or you can omit the quotation marks if the secret has no spaces.

¢ file_pat histhe complete path and name of the file to which the keys must
be exported. Enclose this path in single quotation marks (').

* sof tware_keyst ore_passwor d is the password of the keystore containing
the keys.

4-34 Oracle Database Advanced Security Guide

Managing the TDE Master Encryption Key

e key_idl, key_id2,key_idn isa string of one or more TDE master
encryption key identifiers for the TDE master encryption key being exported.
Separate each key identifier with a comma and enclose each of these key
identifiers in single quotation marks ('). To find a list of TDE master
encryption key identifiers, query the KEY_I D column of the V
$ENCRYPTI ON_KEYS dynamic view.

* SQL_query isa query that fetches a list of the TDE master encryption key
identifiers. It should return only one column which contains the TDE master
encryption key identifiers. This query is executed with current user rights.

4.2.6.4 Example: Exporting a TDE Master Encryption Key by Using a Subquery

The ADM NI STER KEY MANAGEMENT EXPORT ENCRYPTI ON KEYS statement can
export a TDE master encryption key by using a subquery.

Example 4-8 (page 4-35) shows how to export TDE master encryption keys whose
identifiers are fetched by a query to a file called expor t . exp. The TDE master
encryption keys in the file are encrypted using the secret my_secr et . The SELECT
statement finds the identifiers for the TDE master encryption keys to be exported.

Be aware that in a multitenant environment, the W TH | DENTI FI ER clause is not
supported when you try to import or export keys inside a PDB. It is only permitted in
the root. See Exporting and Importing TDE Master Encryption Keys for a PDB

(page 6-10) for information about exporting keys in a PDB.

Example 4-7 Exporting a List of TDE Master Encryption Key Identifiers to a File

ADM NI STER KEY MANAGEMENT EXPORT ENCRYPTI ON KEYS W TH SECRET "ny_secret"
TO '/ TDE/ export.exp' |DENTIFI ED BY password

W TH I DENTI FI ER I N ' AdoxnJOuHO8cv7xkz830vws AAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
" A6z 3Coy KE/ yv3c NT5CACXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' ;

keystore al tered.

4.2.6.5 Example: Exporting a List of TDE Master Encryption Key Identifiers to a File

The ADM NI STER KEY MANAGEMENT EXPORT ENCRYPTI ON KEYS W TH SECRET
statement can export a list of TDE master encryption key identifiers to a file.

Example 4-7 (page 4-35) shows how to export TDE master encryption keys by
specifying their identifiers as a list, to a file called expor t . exp. Master encryption
keys in the file are encrypted using the secret my_secr et . The identifiers of the TDE
master encryption key to be exported are provided as a comma-separated list.

Example 4-8 Exporting TDE Master Encryption Key Identifiers by Using a Subquery

ADM NI STER KEY MANAGEMENT EXPORT ENCRYPTI ON KEYS W TH SECRET "ny_secret”
TO '/ etc/ TDE/ export.exp' |DENTIFI ED BY password
W TH | DENTI FI ER I N (SELECT KEY_|I D FROM VSENCRYPTI ON_KEYS WHERE ROMNUM <3);

keystore altered.

4.2.6.6 Example: Exporting All TDE Master Encryption Keys of the Database

The ADM NI STER KEY MANAGEMENT EXPORT ENCRYPTI ON KEYS SQL statement
can export all TDE master encryption keys of a database.

Example 4-9 (page 4-36) shows how to export all of the TDE master encryption keys
of the database to a file called export . exp. The TDE master encryption keys in the
file are encrypted using the secret my_secr et .

Managing the Keystore and the TDE Master Encryption Key 4-35

Managing the TDE Master Encryption Key

Example 4-9 Exporting All of the TDE Master Encryption Keys of the Database

ADM NI STER KEY MANAGEMENT EXPORT ENCRYPTI ON KEYS W TH SECRET "ny_secret” TO
"l etc/ TDE export.exp' |DENTIFIED BY password;

keystore altered.

4.2.6.7 About Importing TDE Master Encryption Keys

The ADM NI STER KEY MANAGEMENT | MPORT statement can import exported TDE
master encryption keys from a key export file into a target keystore.

You cannot re-import TDE master encryption keys that have already been imported.

In a consolidated database, you can import the keys from within a PDB for a PDB to be
plugged. See Exporting and Importing TDE Master Encryption Keys for a PDB
(page 6-10) for information about exporting keys in a PDB.

4.2.6.8 Importing a TDE Master Encryption Key

The ADM NI STER KEY MANAGEMENT statement with the | MPORT [ENCRYPTI ON|
KEYS W TH SECRET clause can import a TDE master encryption key.

1. Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root. The following command logs
user c##sec_adni n into the root.

sql pl us c##sec_adnmin as syskm
Enter password: password
Connect ed.

2. If necessary, open the keystore.

See Step 3: Open the Software Keystore (page 3-7) for information about opening a
keystore.

3. Run the following SQL statement:

ADM NI STER KEY MANAGEMENT | MPORT [ENCRYPTI ON] KEYS

W TH SECRET "inport_secret" FROM'file_name' | FROM'file_nane'
| DENTI FI ED BY [EXTERNAL STORE | keystore_password]

[WTH BACKUP [USI NG ' backup_i dentifier']];

In this specification:

* inport_secret isthe same password that was used to encrypt the keys
during the export operation. Enclose this secret in double quotation marks ("
"), or you can omit the quotation marks if the secret has no spaces.

e fil e_nane is the complete path and name of the file from which the keys
need to be imported. Enclose this setting in single quotation marks (' ').

e | DENTI FI ED BY can be one of the following settings:

— EXTERNAL STORE uses the keystore password stored in the external
store to perform the keystore operation.

- sof twar e_keyst or e_passwor d is the password of the software
keystore where the keys are being imported.

4-36 Oracle Database Advanced Security Guide

Managing the TDE Master Encryption Key

e W TH BACKUP must be used in case the target keystore was not backed up
before the import operation. backup_i denti fi er is an optional string that
you can provide to identify the keystore backup. Enclose this setting in single
quotation marks (' ').

4.2.6.9 Example: Importing a TDE Master Encryption Key

You can use the ADM Nl STER KEY MANAGEMENT | MPORT KEYS SQL statement to
import a TDE master encryption key.

Example 4-10 (page 4-37) shows how to import the TDE master encryption key
identifiers that are stored in the file expor t . exp and encrypted with the secret
my_secret.

Example 4-10 Importing TDE Master Encryption Key Identifiers from an Export File

ADM NI STER KEY MANAGEMENT | MPORT KEYS W TH SECRET "my_secret™”
FROM '/ et c/ TDE/ export.exp' |DENTIFIED BY password W TH BACKUP,

keystore altered.

4.2.6.10 How Keystore Merge Differs from TDE Master Encryption Key Export or
Import

The keystore merge operation differs from the TDE master encryption key export and
import operations.

Even though both the ADM NI STER KEY MANAGEMENT MERGCE statement and the
ADM NI STER KEY MANAGEMENT EXPORT and | MPORT statements eventually move
the TDE master encryption keys from one keystore to the next, there are differences in
how these two statements function.

¢ The MERGE statement merges two keystores whereas the EXPORT and | MPORT
statements export the keys to a file or import the keys from a file. The keystore is
different from the export file, and the two cannot be used interchangeably. The
export file is not a keystore and cannot be configured to be used with a database
as a keystore. Similarly, the | MPORT statement cannot extract the TDE master
encryption keys from the keystore.

¢ The MERGE statement merges all of the TDE master encryption keys of the
specified keystores where as the EXPORT and | MPORT statements can be selective.

¢ The EXPORT and | MPORT statements require the user to provide both a location
(fi | epat h) and the file name of the export file, whereas the MERCE statement
only takes in the location of the keystores.

* The file name of the keystores is fixed and is determined by the MERGE operation
and can be either ewal | et . p12 or cwal | et . sso. The file names for the export
files used in the EXPORT the | MPORT statements are specified by the user.

¢ The keystores on Automatic Storage Management (ASM) disk groups or regular
file systems can be merged with MERGE statements. The export files used in the
EXPORT and the | MPORT statements can only be a regular operating system file
and cannot be located on an ASM disk group.

¢ The keystores merged using the MERGE statement do not need to be configured or
in use with the database. The EXPORT statement can only export the keys from a
keystore that is configured and in use with the database and is also open when the
export is done. The | MPORT statement can only import the keys into a keystore
that is open, configured, and in use with the database.

Managing the Keystore and the TDE Master Encryption Key 4-37

Storing Secrets Used by Oracle Database

* The MERGCE statement never modifies the metadata associated with the TDE
master encryption keys. The EXPORT and | MPORT operations can modify the
metadata of the TDE master encryption keys when required, such as during a
PDB plug operation.

4.2.7 Management of TDE Master Encryption Keys Using Oracle Key Vault

You can use Oracle Key Vault to manage and share TDE master encryption keys
across an enterprise.

Oracle Key Vault securely stores the keys in a central repository, along with other
security objects such as credential files and Java keystores, and enables you to share
these objects with other TDE-enabled databases.

See Also:

* Migration of Keystores to and from Oracle Key Vault (page 4-17) for
additional benefits of using Oracle Key Vault

® Oracle Key Vault Administrator's Guide

4.3 Storing Secrets Used by Oracle Database

Secrets are data that support internal Oracle Database features and enable external
clients such as Oracle GoldenGate to be integrated into the database.

Topics:

® About Storing Oracle Database Secrets in a Keystore (page 4-38)

® Storage of Oracle Database Secrets in a Software Keystore (page 4-39)

* Example: Adding an HSM Password to a Software Keystore (page 4-40)

e Example: Changing an HSM Password That Is Stored as a Secret in a Software
Keystore (page 4-40)

¢ Example: Deleting an HSM Password That Is Stored as a Secret in a Software
Keystore (page 4-41)

® Storage of Oracle Database Secrets in a Hardware Keystore (page 4-41)
¢ Example: Adding an Oracle Database Secret to a Hardware Keystore (page 4-42)

¢ Example: Changing an Oracle Database Secret in a Hardware Keystore
(page 4-42)

* Example: Deleting an Oracle Database Secret in a Hardware Keystore (page 4-42)

¢ Configuring Auto-Login Hardware Security Modules (page 4-42)

4.3.1 About Storing Oracle Database Secrets in a Keystore

Keystores can store secrets that support internal Oracle Database features and
integrate external clients such as Oracle GoldenGate.

The secret key must be a string adhering to Oracle identifier rules. You can add,
update, or delete a client secret in an existing keystore. The Oracle GoldenGate Extract

4-38 Oracle Database Advanced Security Guide

Storing Secrets Used by Oracle Database

process must have data encryption keys to decrypt the data that is in data files and in
REDO or UNDOlogs. Keys are encrypted with shared secrets when you share the keys
between an Oracle database and an Oracle GoldenGate client. The software keystore
stores the shared secrets.

Depending on your site's requirements, you may require automated open keystore
operations even when a hardware security module is configured. For this reason, the
hardware security module password can be stored in a software auto-login keystore,
which enables the auto-login capability for the hardware security module. The Oracle
Database side can also store the credentials for the database to log in to an external
storage server in the software keystore.

You can store Oracle Database secrets in both software keystores and hardware
keystores:

* Software keystores: You can store secrets in software password-based, auto-login,
and local auto-login software keystores. If you want to store secrets in an auto-
login (or auto-login local) keystore, then note the following:

— If the software auto-login keystore is in the same location as its corresponding
password-based software keystore, then the secrets are added automatically.

- If the software auto-login keystore is in a different location from its
corresponding password-based software keystore, then you must create the
auto-login keystore again from the password-based keystore, and keep the
two keystores in synchronization.

* Hardware keystores: You can store secrets in standard hardware security
modules.

See Also:

* Storage of Oracle Database Secrets in a Hardware Keystore (page 4-41)

¢ Configuring Auto-Login Hardware Security Modules (page 4-42)

4.3.2 Storage of Oracle Database Secrets in a Software Keystore

The ADM NI STER KEY MANAGEMENT ADD SECRET| UPDATE SECRET| DELETE
CLI ENT statements can add secrets, update secrets, and delete secrets from a keystore.

As with all of the ADM NI STER KEY MANAGEMENT statements, you must have the
ADM NI STER KEY MANAGEMENT or the SYSKMadministrative privilege. In a
multitenant environment, run the statement in the root.

* Adding a secret: Use the following syntax:

ADM NI STER KEY MANAGEMENT
ADD SECRET 'secret' FOR CLIENT 'client_identifier' [USING TAG 'tag']
| DENTI FI ED BY keystore_password [W TH BACKUP [USI NG ' backup_identifier'];

¢ Updating a secret: Use the following syntax:

ADM NI STER KEY MANAGEMVENT
UPDATE SECRET 'secret' FOR CLIENT 'client_identifier' [USING TAG 'tag']
| DENTI FI ED BY keystore_password [W TH BACKUP [USI NG ' backup_i dentifier'];

¢ Deleting a secret: Use the following syntax:

Managing the Keystore and the TDE Master Encryption Key 4-39

Storing Secrets Used by Oracle Database

ADM NI STER KEY MANAGEMVENT
DELETE SECRET FOR CLIENT 'client_identifier'
| DENTI FI ED BY keystore_password [W TH BACKUP [USI NG ' backup_i dentifier'];

In all of these statements, the specification is as follows:

e secret is the client secret key to be stored, updated, or deleted. Enclose this
setting in single quotation marks (') or omit the quotation marks if the secret has
no spaces.

e client_identifier isanalphanumeric string used to identify the secret key.

client_identifier doesnothave adefault value. Enclose this setting in single

quotation marks (' ').

* tagisan optional, user-defined description for the secret key to be stored. You
can use t ag with the ADD and UPDATE operations. Enclose this setting in single
quotation marks ('). This tag appears in the SECRET_TAG column of the V
$CLI ENT_SECRETS view. See Creating Custom TDE Master Encryption Key
Attributes for Reporting Purposes (page 4-28) for more information about tags.

e Kkeystore_password is the password for the keystore.

e W TH BACKUP is required in case the keystore was not backed up before the ADD,

UPDATE, or DELETE operation. backup_i denti fi er is an optional user-defined

description for the backup. Enclose backup_i dent i fi er in single quotation
marks (').

4.3.3 Example: Adding an HSM Password to a Software Keystore

The ADM NI STER KEY MANAGEMENT ADD SECRET statement can add an HSM
password to a software keystore.

Example 4-11 (page 4-40) shows how to add a hardware security module (HSM)
password as a secret to a software keystore.

Example 4-11 Adding an Oracle Database Secret to a Software Keystore

ADM NI STER KEY MANAGEMENT
ADD SECRET 'psmith: password' FOR CLI ENT ' HSM PASSWORD
USI NG TAG ' HSM credential s' | DENTI FI ED BY password W TH BACKUP,

4.3.4 Example: Changing an HSM Password That Is Stored as a Secret in a Software

Keystore

The ADM NI STER KEY MANAGEMENT UPDATE SECRET statement can change an
HSM password that is stored as a secret in a software keystore.

Example 4-12 (page 4-40) shows how to change an HSM password that is stored as a
secret in a software keystore.

Example 4-12 Changing an Oracle Database Secret to a Software Keystore

ADM NI STER KEY MANAGEMENT
UPDATE SECRET admi n_password FOR CLI ENT ' HSM PASSWORD
USI NG TAG ' new_host _credential s' | DENTIFI ED BY sof t ware_keyt ore_passwor d;

4-40 Oracle Database Advanced Security Guide

Storing Secrets Used by Oracle Database

4.3.5 Example: Deleting an HSM Password That Is Stored as a Secret in a Software

Keystore

The ADM NI STER KEY MANAGEMENT DELETE SECRET statement can delete HSM
passwords that are stored as secrets in a software keystore.

Example 4-13 (page 4-41) shows how to delete an HSM password that is stored as a
secret in the software keystore.

Example 4-13 Deleting an Oracle Database Secret in a Software Keystore

ADM NI STER KEY MANAGEMENT
DELETE SECRET FOR CLIENT ' HSM PASSWORD
| DENTI FI ED BY password W TH BACKUP;

4.3.6 Storage of Oracle Database Secrets in a Hardware Keystore

The ADM NIl STER KEY MANAGEMENT ADD SECRET| UPDATE SECRET| DELETE
CLI ENT statements can add, update, and delete secrets.

As with all ADM NI STER KEY MANAGEMENT statements, you must have the
ADM NI STER KEY MANAGEMENT or the SYSKMadministrative privilege. In a
multitenant environment, run the statement in the root.

Note:

Before you attempt to add a secret to a hardware security module, ensure that
it has PDCS#11 data object support.

* Adding a secret: Use the following syntax:

ADM NI STER KEY MANAGEMENT ADD SECRET 'secret'
FOR CLIENT "client_identifier' [USING TAG 'tag']
| DENTI FI ED BY "user _i d: password";

¢ Updating a secret: Use the following syntax:

ADM NI STER KEY MANAGEMENT UPDATE SECRET 'secret'
FOR CLIENT "client _identifier' [USING TAG 'tag']
| DENTI FI ED BY "user _i d: password";

¢ Deleting a secret: Use the following syntax:

ADM NI STER KEY MANAGEMENT DELETE SECRET FOR CLIENT 'client _identifier'
| DENTI FI ED BY "user _i d: password";

In all of these statements, the specification as follows:

e secret is the client secret key to be stored, updated, or deleted. Enclose this
setting in double quotation marks (' ') or omit the quotation marks if the secret has
no spaces.

e client_identifier isanalphanumeric string used to identify the secret key.
client_identifier doesnothave a default value. Enclose this setting in single
quotation marks (' ').

* tagisan optional, user-defined description for the secret key to be stored. You
can use t ag with the ADD and UPDATE operations. Enclose this setting in single
quotation marks (' '). This tag appears in the SECRET_TAG column of the V

Managing the Keystore and the TDE Master Encryption Key 4-41

Storing Secrets Used by Oracle Database

$CLI ENT_SECRETS view. See Creating Custom TDE Master Encryption Key
Attributes for Reporting Purposes (page 4-28) for more information about tags.

e user_i d: passwor d is the password for the hardware keystore. Separate the
user _i d and the passwor d with a colon, and enclose this setting in double
quotation marks (").

4.3.7 Example: Adding an Oracle Database Secret to a Hardware Keystore

The ADM NI STER KEY MANAGEMENT ADD SECRET statement can add an Oracle
Database secret to a hardware keystore.

Example 4-14 (page 4-42) shows how to add a password for a user to a hardware
keystore.

Example 4-14 Adding an Oracle Database Secret to a Hardware Keystore

ADM NI STER KEY MANAGEMENT ADD SECRET ' passwor d'
FOR CLI ENT 'admi n@ryhost' USING TAG ' nyhost adnin credentials'
| DENTI FI ED BY "psnit h: password";

4.3.8 Example: Changing an Oracle Database Secret in a Hardware Keystore

The ADM NI STER KEY MANAGEMENT MANAGEMENT UPDATE SECRET statement can
change an Oracle Database secret in a hardware keystore.

Example 4-15 (page 4-42) shows how to change a password that is stored as a secret
in a hardware keystore.

Example 4-15 Changing an Oracle Database Secret in a Hardware Keystore

ADM NI STER KEY MANAGEMENT MANAGEMENT UPDATE SECRET ' passwor d2'
FOR CLI ENT 'admi n@ryhost' USI NG TAG ' New host credential s'
| DENTI FI ED BY "psmith: password”;

4.3.9 Example: Deleting an Oracle Database Secret in a Hardware Keystore

The ADM NI STER KEY MANAGEMENT DELETE SECRET FOR CLI ENT statement can
delete an Oracle Database secret that is in a hardware keystore.

Example 4-16 (page 4-42) shows how to delete a hardware security module password
that is stored as a secret in the hardware keystore.

Example 4-16 Deleting an Oracle Database Secret in a Hardware Keystore

ADM NI STER KEY MANAGEMENT DELETE SECRET FOR CLIENT 'adm n@myhost'
| DENTI FI ED BY "psnith: password";

4.3.10 Configuring Auto-Login Hardware Security Modules
A hardware security module can be configured to use the auto-login capability.
Topics:
e About Configuring Auto-Login Hardware Security Modules (page 4-42)

¢ Configuring an Auto-Login Hardware Security Module (page 4-43)

4.3.10.1 About Configuring Auto-Login Hardware Security Modules

An auto-login hardware security module stores the hardware security module
credentials in an auto-login keystore.

4-42 Oracle Database Advanced Security Guide

Storing Secrets Used by Oracle Database

This configuration reduces the security of the system as a whole. However, this
configuration does support unmanned or automated operations and is useful in
deployments where automatic re-login of the hardware security module is necessary.

Be aware that executing the query SELECT * FROM VSENCRYPTI ON_WALLET will
automatically open an auto-login hardware security module. For example, suppose
you have an auto-login hardware security module configured. If you close the
keystore and query the VEENCRYPTI ON_WALLET view, then the output will indicate
that a keystore is open. This is because VSENCRYPTI ON_WALLET opened up the auto-
login hardware and then displayed the status of the auto-login keystore.

To enable the auto-login capability for a hardware security module, you must store the
hardware security module credentials in the hardware keystore.

4.3.10.2 Configuring an Auto-Login Hardware Security Module

The ADM NI STER KEY MANAGEMENT statement configures an auto-login hardware
security module.

1. Ensure that you configured the TDE hardware keystore. using Configuring a
Hardware Keystore (page 3-10).

2. Close the hardware security module if it is open. (You can check the status of
whether a keystore is open or closed by querying the STATUS column of the V
$ENCRYPTI ON_WALLET view.)

For example:

ADM NI STER KEY MANAGEMENT SET KEYSTORE CLOSE | DENTI FI ED BY "psnith: password”;
See Closing a Hardware Keystore (page 4-19) for more information.

3. If you have not migrated from a software keystore, then create the software
keystore with the hardware keystore password in the appropriate location (for
example, / et ¢/ ORACLE/ WALLETS/ orcl).

For example:

ADM NI STER KEY MANAGEMENT CREATE KEYSTORE '/ etc/ ORACLE/ WALLETS/ orcl'
| DENTI FI ED BY "psnmith: password";

4. 1If you have migrated and are using an auto-login software keystore in a specific
location (for example, / et ¢/ ORACLE/ WALLETS/ HSM), then create the software
password keystore with the hardware keystore password from the auto-login
keystore.

For example:

ADM NI STER KEY MANAGEMENT CREATE KEYSTORE ' /et c/ ORACLE/ WALLETS/ orcl' | DENTI FI ED
BY "psmi t h: password";

ADM NI STER KEY MANAGEMENT

MERGE KEYSTORE '/etc/ ORACLE/ WALLETS/ HSM -- Exanpl e keystore path

I NTO EXI STI NG KEYSTORE '/ et ¢/ ORACLE/ WALLETS/ HSM -- Exanpl e keystore |ocation
| DENTI FI ED BY "psnmith: password" WTH BACKUP;

The location of the keystore for the ADM NI STER KEY MANAGEMENT merge
statement does not need to be the location of the keystore in use.

5. Reconfigure the sgl net . or a file and add the keystore location of the software
keystore created in Step 3 (page 4-43) or Step 4 (page 4-43) to the DI RECTORY
setting of the ENCRYPTI ON_WALLET_LOCATI ONsetting.

Managing the Keystore and the TDE Master Encryption Key 4-43

Storing Oracle GoldenGate Secrets in a Keystore

For example:

ENCRYPTI ON_WALLET_LOCATI ON=
(SOURCE=(METHOD=FI LE) (METHOD_DATA=
(DI RECTORY=/ et ¢/ ORACLE/ WALLETS/ orcl)))

About the Keystore Location in the sqlnet.ora File (page 3-2) provides more
information about how Oracle Database finds the keystore location.

6. Reconnect to the database, or log out and then log back in again, so that the
change that you made in the previous step takes effect.

For example:

CONNECT psni th/ AS SYSKM
Enter password: password

7. Open the software keystore.
For example:

ADM NI STER KEY MANAGEMENT SET KEYSTORE OPEN | DENTI FI ED BY
sof t war e_keyst ore_passwor d;

8. Add or update the secret in the software keystore.

The secret is the hardware security module password and the client is the
HSM_PASSWORD. HSM_PASSWORD is an Oracle-defined client name that is used to
represent the HSM password as a secret in the software keystore.

For example:

ADM NI STER KEY MANAGEMENT ADD SECRET "user _i d: password”
FOR CLI ENT "HSM PASSWORD" | DENTI FI ED BY sof t war e_keyst or e_passwor d
W TH BACKUP;

9. Close the software keystore.
For example:

ADM NI STER KEY MANAGEMENT SET KEYSTORE CLOSE | DENTI FI ED BY
sof t war e_keyst ore_passwor d;

10. Create (or re-create) the auto-login keystore.

ADM NI STER KEY MANAGEMENT CREATE AUTO LOG N KEYSTORE
FROM KEYSTORE '/ et ¢/ ORACLE/ WALLETS/ orcl /hsm -- Keystore |ocation
| DENTI FI ED BY sof t ware_keyst ore_passwor d;

11. Update the sqgl net . or a file to use the hardware security module location.
For example:

ENCRYPTI ON_WALLET_LOCATI ON=
(SOURCE=(METHOD=HSM (METHOD_DATA=
(DI RECTORY=/ et ¢/ ORACLE/ WALLETS/ orcl)))

At this stage, the next time that a TDE operation executes, the hardware security
module auto-login keystore opens automatically.

4.4 Storing Oracle GoldenGate Secrets in a Keystore

You can store Oracle GoldenGate secrets in Transparent Data Encryption keystores.

Topics:

4-44 Oracle Database Advanced Security Guide

Storing Oracle GoldenGate Secrets in a Keystore

¢ About Storing Oracle GoldenGate Secrets in Keystores (page 4-45)
* Oracle GoldenGate Extract Classic Capture Mode TDE Requirements (page 4-45)

* Configuring TDE Keystore Support for Oracle GoldenGate (page 4-46)

See Also:

Oracle Key Vault Administrator’s Guide about how to use TDE with Oracle
GoldenGate in an Oracle Key Vault environment

4.4.1 About Storing Oracle GoldenGate Secrets in Keystores

You can use a keystore to store secret keys for tools and external clients such as Oracle
GoldenGate.

The secret key must be a string adhering to Oracle identifier rules. You can add,
update, or delete a client secret in an existing keystore. This section describes how to
capture Transparent Data Encryption encrypted data in the Oracle GoldenGate Extract
(Extract) process using classic capture mode.

TDE support when Extract is in classic capture mode requires the exchange of the
following keys:

e TDE support for Oracle GoldenGate in the classic capture mode of the Extract
process requires that an Oracle database and the Extract process share the secret
to encrypt sensitive information being exchanged. The shared secret is stored
securely in the Oracle database and Oracle GoldenGate domains. The shared
secret is stored in the software keystore or the HSM as the database secret.

e The decryption key is a password known as the shared secret that is stored
securely in the Oracle database and Oracle GoldenGate domains. Only a party
that has possession of the shared secret can decrypt the table and redo log keys.

After you configure the shared secret, Oracle GoldenGate Extract uses the shared
secret to decrypt the data. Oracle GoldenGate Extract does not handle the TDE master
encryption key itself, nor is it aware of the keystore password. The TDE master
encryption key and password remain within the Oracle database configuration.

Oracle GoldenGate Extract only writes the decrypted data to the Oracle GoldenGate
trail file, which Oracle GoldenGate persists during transit. You can protect this file
using your site's operating system standard security protocols, as well as the Oracle
GoldenGate AES encryption options. Oracle GoldenGate does not write the encrypted
data to a discard file (specified with the DI SCARDFI LE parameter). The word
ENCRYPTED will be written to any discard file that is in use.

Oracle GoldenGate does require that the keystore be open when processing encrypted
data. There is no performance effect of Oracle GoldenGate feature on the TDE
operations.

4.4.2 Oracle GoldenGate Extract Classic Capture Mode TDE Requirements

Ensure that you meet the requirements for Oracle GoldenGate Extract to support
Transparent Data Encryption capture.

The requirements are as follows:

Managing the Keystore and the TDE Master Encryption Key 4-45

Storing Oracle GoldenGate Secrets in a Keystore

¢ To maintain high security standards, ensure that the Oracle GoldenGate Extract
process runs as part of the Oracle user (the user that runs the Oracle database).
That way, the keys are protected in memory by the same privileges as the Oracle
user.

* Run the Oracle GoldenGate Extract process on the same computer as the Oracle
database installation.

4.4.3 Configuring TDE Keystore Support for Oracle GoldenGate

To configure Transparent Data Encryption keystore support for Oracle GoldenGate,
you must decide on a shared secret for the keystore, configure the Oracle database,
store the shared secret in the keystore, and then set the shared secret in the extract
process.

Topics:
e Step 1: Decide on a Shared Secret for the Keystore (page 4-46)

e Step 2: Configure Oracle Database for TDE Support for Oracle GoldenGate
(page 4-46)

¢ Step 3: Store the TDE GoldenGate Shared Secret in the Keystore (page 4-47)
e Step 4: Set the TDE Oracle GoldenGate Shared Secret in the Extract Process
(page 4-48)

4.4.3.1 Step 1: Decide on a Shared Secret for the Keystore

A shared secret for a keystore is a password.

® Decide on a shared secret that meets or exceeds Oracle Database password
standards.

Do not share this password with any user other than trusted administrators who are
responsible for configuring Transparent Data Encryption to work with Oracle
GoldenGate Extract.

See Also:

Oracle Database Security Guide for guidelines on creating secure passwords

4.4.3.2 Step 2: Configure Oracle Database for TDE Support for Oracle GoldenGate

The DBMS_I NTERNAL _CLKMPL/SQL package enables you to configure TDE support
for Oracle GoldenGate.

1. Login to the database instance as user SYS with the SYSDBA administrative
privilege.

For example

sql plus sys as sysdba
Enter password: password
Connect ed.

2. In a multitenant environment, connect to the appropriate PDB.

For example:

4-46 Oracle Database Advanced Security Guide

Storing Oracle GoldenGate Secrets in a Keystore

5.

CONNECT SYS@rr pdb AS SYSDBA
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check
the current PDB, run the show con_namnme command.

Load the Oracle Database-supplied DBM5_| NTERNAL_CLKMPL/SQL package.
For example:

@/ app/ oracl e/ product/ 12. 1/ rdbns/ admi n/ prvtcl km pl b

The pr vt cl km pl b file also enables Oracle GoldenGate to extract encrypted data
from an Oracle database.

Grant the EXECUTE privilege on the DBV5_| NTERNAL _CLKMPL/SQL package to
the Oracle GoldenGate Extract database user.

For example:

GRANT EXECUTE ON DBMS_| NTERNAL_CLKM TO psi t h;

This procedure enables the Oracle database and Oracle GoldenGate Extract to
exchange information.

Exit SQL*Plus.

4.4.3.3 Step 3: Store the TDE GoldenGate Shared Secret in the Keystore

The ADM NI STER KEY MANAGEMENT statement can store a TDE GoldenGate shared
secret in a keystore.

1.

Ensure that you have configured the TDE software or hardware keystore, based
on the following topics:

¢ Configuring a Software Keystore (page 3-1)
¢ Configuring a Hardware Keystore (page 3-10)

Set the Oracle GoldenGate-Transparent Data Encryption key in the keystore.
The syntax is as follows:

ADM NI STER KEY MANAGEMENT ADD| UPDATE| DELETE SECRET 'secret'
FOR CLIENT 'secret _identifier' [USING TAG 'tag']
| DENTI FI ED BY keystore_password [W TH BACKUP [USI NG ' backup_identifier']];

In this specification:

e secr et is the client secret key to be stored, updated, or deleted. Enclose this
setting in single quotation marks (').

e secret_identifier isanalphanumeric string used to identify the secret
key.secret _i dentifier doesnothave a default value. Enclose this setting
in single quotation marks (' ').

* tagisan optional, user-defined description for the secret key to be stored.
t ag can be used with the ADD and UPDATE operations. Enclose this setting in
single quotation marks (' '). This tag appears in the SECRET_TAG column of
the V$CLI ENT_SECRETS view. Creating Custom TDE Master Encryption Key
Attributes for Reporting Purposes (page 4-28) provides more information
about tags.

Managing the Keystore and the TDE Master Encryption Key 4-47

Storing Oracle GoldenGate Secrets in a Keystore

e keystore_password is the password for the keystore that is configured.

* W TH BACKUP is required in case the keystore was not backed up before the
ADD, UPDATE or DELETE operation. backup_i denti fi er is an optional
user-defined description for the backup. Enclose backup_i denti fi er in
single quotation marks (' ').

The following example adds a secret key to the keystore and creates a backup in
the same directory as the keystore:

ADM NI STER KEY MANAGEMENT ADD SECRET ' some_secret'’
FOR CLIENT ' ORACLE_GG USI NG TAG ' Gol denGate Secret'
| DENTI FI ED BY password W TH BACKUP USI NG ' GG backup';

Verify the entry that you just created.
For example:

SELECT CLI ENT, SECRET_TAG FROM V$CLI ENT_SECRETS WHERE CLI ENT = ' ORACLEGG ;
CLIENT ~ SECRET_TAG

ORACLEGG sone_secr et

Switch the log files.
CONNECT / AS SYSDBA

ALTER SYSTEM SW TCH LOGFI LE;

Oracle Database Administrator’s Guide provides more information about switching
log files.

See Also:

How Transparent Data Encryption Works with Oracle Real Application
Clusters (page 6-4) if you are having problems using this procedure in an
Oracle Real Application Clusters environment

4.4.3.4 Step 4: Set the TDE Oracle GoldenGate Shared Secret in the Extract Process

The GoldenGate Software Command Interface (GGSCI) utility set the TDE Oracle
GoldenGate shared secret in the extract process.

1.

Start the GGSCI utility.

For example:

ggsci

In the GGSCT utility, run the ENCRYPT PASSWORD command to encrypt the
shared secret so that it is obfuscated within the Oracle GoldenGate Extract
parameter file.

ENCRYPT PASSWORD shar ed_secret al gorithm ENCRYPTKEY keyname
In this specification:

¢ shared_secret is the clear-text shared secret that you created in Step 1:
Decide on a Shared Secret for the Keystore (page 4-46). This setting is case
sensitive.

4-48 Oracle Database Advanced Security Guide

Storing Oracle GoldenGate Secrets in a Keystore

al gori t hmis one of the following values to specify AES encryption:
- AES128
- AES192
- AES256

keynane is the logical name of the encryption key in the ENCKEYS lookup
file. Oracle GoldenGate uses this name to look up the actual key in the
ENCKEYS file.

For example:

ENCRYPT PASSWORD password AES256 ENCRYPTKEY nykeyl

In the Oracle GoldenGate Extract parameter file, set the DBOPTI ONS parameter
with the DECRYPTPASSWORD option.

As input, supply the encrypted shared secret and the Oracle GoldenGate-
generated or user-defined decryption key.

DBOPTI ONS DECRYPTPASSWORD shar ed_secret al gorithm ENCRYPTKEY keynane

In this specification:

shar ed_secr et is the clear-text shared secret that you created in Step 1:
Decide on a Shared Secret for the Keystore (page 4-46). This setting is case
sensitive.

al gori t hmis one of the following values to specify AES encryption:
- AES128
- AES192
- AES256

keynane is the logical name of the encryption key in the ENCKEYS lookup
file.

For example:

DBOPTI ONS DECRYPTPASSWORD AACAAAAAAAAAAAI ALCKDZI RHQJBHOJUH AES256
ENCRYPTKEY nykey1

Managing the Keystore and the TDE Master Encryption Key 4-49

Storing Oracle GoldenGate Secrets in a Keystore

4-50 Advanced Security Guide

5

General Considerations of
Using Transparent Data Encryption

When you use Transparent Data Encryption, you should consider factors such as
security, performance, and storage overheads.

Topics:

¢ Compression and Data Deduplication of Encrypted Data (page 5-1)

® Security Considerations for Transparent Data Encryption (page 5-2)

® Performance and Storage Overhead of Transparent Data Encryption (page 5-3)

* Modifying Your Applications for Use with Transparent Data Encryption
(page 5-5)

e How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT
(page 5-5)

¢ Using Transparent Data Encryption with PKI Encryption (page 5-9)

5.1 Compression and Data Deduplication of Encrypted Data

With tablespace encryption, Oracle Database compresses tables and indexes before
encrypting the tablespace.

This ensures that you receive the maximum space and performance benefits from
compression, while also receiving the security of encryption at rest. In the CREATE
TABLESPACE SQL statement, include both the COVPRESS and ENCRYPT clauses.

With column encryption, Oracle Database compresses the data after it encrypts the
column. This means that compression will have minimal effectiveness on encrypted
columns. There is one notable exception: if the column is a SecureFiles LOB, and the
encryption is implemented with SecureFiles LOB Encryption, and the compression
(and possibly deduplication) are implemented with SecureFiles LOB Compression &
Deduplication, then compression is performed before encryption. Similar to the
CREATE TABLESPACE statement for tablespace encryption, include both the
COVPRESS and ENCRYPT clauses.

General Considerations of Using Transparent Data Encryption 5-1

Security Considerations for Transparent Data Encryption

See Also:

® Oracle Database Backup and Recovery User’s Guide for more information
about the Advanced Compression Option

e Oracle Database SecureFiles and Large Objects Developer’s Guide for
information about SecureFiles LOB storage

® Oracle Database SecureFiles and Large Objects Developer’s Guide for
information about SecureFiles Compression

5.2 Security Considerations for Transparent Data Encryption

As with all Oracle Database features, you should consider security when you create
TDE policies.

Topics:
¢ Transparent Data Encryption General Security Advice (page 5-2)
e Transparent Data Encryption Column Encryption-Specific Advice (page 5-2)

* Managing Security for Plaintext Fragments (page 5-3)

5.2.1 Transparent Data Encryption General Security Advice

Security considerations for Transparent Data Encryption (TDE) operate within the
broader area of total system security.

Follow these general guidelines:

* Identify the degrees of sensitivity of data in your database, the protection that
they need, and the levels of risk to be addressed. For example, highly sensitive
data requiring stronger protection can be encrypted with the AES256 algorithm. A

database that is not as sensitive can be protected with no salt or the normac option
to enable performance benefits.

¢ Evaluate the costs and benefits that are acceptable to data and keystore protection.
Protection of keys determines the type of keystore to be used: auto-login software
keystores, password-based software keystores, or hardware keystores.

* Consider having separate security administrators for TDE and for the database.
¢ Consider having a separate and exclusive keystore for TDE.

* Implement protected back-up procedures for your encrypted data.

5.2.2 Transparent Data Encryption Column Encryption-Specific Advice

Additional security considerations apply to normal database and network operations
when using TDE.

Encrypted column data stays encrypted in the data files, undo logs, redo logs, and the
buffer cache of the system global area (SGA). However, data is decrypted during
expression evaluation, making it possible for decrypted data to appear in the swap file
on the disk. Privileged operating system users can potentially view this data.

Column values encrypted using TDE are stored in the data files in encrypted form.
However, these data files may still contain some plaintext fragments, called ghost

5-2 Oracle Database Advanced Security Guide

Performance and Storage Overhead of Transparent Data Encryption

copies, left over by past data operations on the table. This is similar to finding data on
the disk after a file was deleted by the operating system.

5.2.3 Managing Security for Plaintext Fragments
You should remove old plaintext fragments that can appear over time.

Old plaintext fragments may be present for some time until the database overwrites
the blocks containing such values. If privileged operating system users bypass the
access controls of the database, then they might be able to directly access these values
in the data file holding the tablespace.

To minimize this risk:

1. Create a new tablespace in a new data file.

You can use the CREATE TABLESPACE statement to create this tablespace.

2. Move the table containing encrypted columns to the new tablespace. You can use
the ALTER TABLE. MOVE statement.

Repeat this step for all of the objects in the original tablespace.

3. Drop the original tablespace.

You can use the DROP TABLESPACE t abl espace | NCLUDI NG CONTENTS
KEEP DATAFI LES statement. Oracle recommends that you securely delete data
files using platform-specific utilities.

4. Use platform-specific and file system-specific utilities to securely delete the old
data file. Examples of such utilities include shr ed (on Linux) and sdel et e (on
Windows).

5.3 Performance and Storage Overhead of Transparent Data Encryption

The performance of Transparent Data Encryption can vary. There are no storage
overheads, but TDE column encryption has some associated storage overhead.

Topics:
® Performance Overhead of Transparent Data Encryption (page 5-3)

¢ Storage Overhead of Transparent Data Encryption (page 5-4)

See Also:

Performance Questions About Transparent Data Encryption (page 7-4)

5.3.1 Performance Overhead of Transparent Data Encryption

Transparent Data Encryption tablespace encryption has small associated performance
overhead.

The actual performance impact on applications can vary. TDE column encryption
affects performance only when data is retrieved from or inserted into an encrypted
column. No reduction in performance occurs for operations involving unencrypted
columns, even if these columns are in a table containing encrypted columns. Accessing
data in encrypted columns involves small performance overhead, and the exact
overhead you observe can vary.

General Considerations of Using Transparent Data Encryption 5-3

Performance and Storage Overhead of Transparent Data Encryption

The total performance overhead depends on the number of encrypted columns and
their frequency of access. The columns most appropriate for encryption are those
containing the most sensitive data.

Enabling encryption on an existing table results in a full table update like any other
ALTER TABLE operation that modifies table characteristics. Keep in mind the
potential performance and redo log impact on the database server before enabling
encryption on a large existing table.

A table can temporarily become inaccessible for write operations while encryption is
being enabled, TDE table keys are being rekeyed, or the encryption algorithm is being
changed. You can use online table redefinition to ensure that the table is available for
write operations during such procedures.

If you enable TDE column encryption on a very large table, then you may need to
increase the redo log size to accommodate the operation.

Encrypting an indexed column takes more time than encrypting a column without
indexes. If you must encrypt a column that has an index built on it, you can try
dropping the index, encrypting the column with NO SALT, and then re-creating the
index.

If you index an encrypted column, then the index is created on the encrypted values.
When you query for a value in the encrypted column, Oracle Database transparently
encrypts the value used in the SQL query. It then performs an index lookup using the
encrypted value.

Note:

If you must perform range scans over indexed, encrypted columns, then use
TDE tablespace encryption in place of TDE column encryption.

See Also:
¢ Creating an Encrypted Column in an External Table (page 3-21)

® Oracle Database Administrator’s Guide for information about redefining
tables online

5.3.2 Storage Overhead of Transparent Data Encryption

TDE tablespace encryption has no storage overhead, but TDE column encryption has
some associated storage overhead.

Encrypted column data must have more storage space than plaintext data. In addition,
TDE pads out encrypted values to multiples of 16 bytes. This means that if a credit
card number requires nine bytes for storage, then an encrypted credit card value will
require an additional seven bytes.

Each encrypted value is also associated with a 20-byte integrity check. This does not
apply if you have encrypted columns using the NOVAC parameter. If data was
encrypted with salt, then each encrypted value requires an additional 16 bytes of
storage.

The maximum storage overhead for each encrypted value is from one to 52 bytes.

5-4 Oracle Database Advanced Security Guide

Modifying Your Applications for Use with Transparent Data Encryption

See Also:

Creating an Encrypted Column in an External Table (page 3-21)

5.4 Modifying Your Applications for Use with Transparent Data

Encryption

You can modify your applications to use Transparent Data Encryption.

1.

Configure the software or hardware keystore for TDE, and then set the master
encryption key.

See the following sections for more information:
¢ Configuring a Software Keystore (page 3-1)
e Configuring a Hardware Keystore (page 3-10)

Verify that the master encryption key was created by querying the KEY_I D
column of the VEENCRYPTI ON_KEYS view.

Identify the sensitive columns (such as those containing credit card data) that
require Transparent Data Encryption protection.

Decide whether to use TDE column encryption or TDE tablespace encryption.

See the following sections for more information:
* How Transparent Data Encryption Column Encryption Works (page 2-3)
* How Transparent Data Encryption Tablespace Encryption Works (page 2-4)

Open the keystore.

See the following sections for more information:
* Step 3: Open the Software Keystore (page 3-7)
¢ Step 3: Open the Hardware Keystore (page 3-12)

Encrypt the columns or tablespaces.

See the following sections for more information:
* Encrypting Columns in Tables (page 3-16)

* Encrypting Tablespaces (page 3-25)

5.5 How ALTER SYSTEM and orapki Map to ADMINISTER KEY

MANAGEMENT

Many of the clauses from the ALTER SYSTEMstatement correspond to the
ADM NI STER KEY MANAGEMENT statement.

Table 5-1 (page 5-6) compares the Transparent Data Encryption usage of the ALTER
SYSTEMstatement and the or apki utility from previous releases with the
ADM NI STER KEY MANAGEMENT statement.

General Considerations of Using Transparent Data Encryption 5-5

How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Table 5-1 How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Behavior

ALTER SYSTEM or
orapki

ADMINISTER KEY MANAGEMENT

Creating a keystore

Creating an auto-login
keystore

Opening a keystore

Closing a keystore

Migrating from a
hardware keystore to
a software keystore

Migrating from a
software keystore to a
hardware keystore

For software keystores (called
wallets in previous releases):

ALTER SYSTEM SET ENCRYPTI ON KEY
["certificate_|ID'] | DENTIFIED
BY keyst ore_passwor d;

For hardware keystores, the
keystore is available after you
configure the hardware security
module.

orapki wallet create -wallet
wal | et _| ocation
-auto_login [-pwd password]

ALTER SYSTEM SET ENCRYPTI ON
WALLET OPEN | DENTI FI ED BY
passwor d;

ALTER SYSTEM SET ENCRYPTI ON
WALLET CLOSE | DENTI FI ED BY
passwor d;

Not available

ALTER SYSTEM SET ENCRYPTI ON KEY
| DENTI FI ED BY

"user_id: password" M GRATE

USI NG wal | et _passwor d;

5-6 Oracle Database Advanced Security Guide

For software keystores:

ADM NI STER KEY MANAGEMENT CREATE KEYSTORE
"keystore_l ocation'
| DENTI FI ED BY sof t ware_keyst ore_passwor d

For hardware keystores, the keystore is available
after you configure the hardware security
module.

For software keystores:

ADM NI STER KEY MANAGEMENT CREATE [LOCAL]
AUTO LOG N KEYSTORE FROM KEYSTORE
"keystore_| ocation'

| DENTI FI ED BY sof t ware_keyst ore_passwor d;

This type of keystore applies to software
keystores only.

ADM NI STER KEY MANAGEMENT SET KEYSTORE
OPEN | DENTI FI ED BY keyst ore_passwor d
[CONTAINER = ALL | CURRENT];

For both software and hardware keystores:

ADM NI STER KEY MANAGEMENT SET KEYSTORE
CLOSE | DENTI FI ED BY keystore_password
[CONTAI NER = ALL | CURRENT];

ADM NI STER KEY MANAGEMENT SET ENCRYPTI ON
KEY | DENTI FI ED BY

sof t ware_keyst ore_passwor d

REVERSE M GRATE USI NG "user _i d: passwor d”
[WTH BACKUP [USI NG ' backup_identifier']];

ADM NI STER KEY MANAGEMENT SET ENCRYPTI ON
KEY | DENTI FI ED BY "user _i d: passwor d"
M GRATE USI NG sof t war e_keyst ore_passwor d;

How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Table 5-1 (Cont.) How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT
. __|

Behavior ALTER SYSTEM or ADMINISTER KEY MANAGEMENT
orapki
Changing a keystore) For password-based software keystores:
password orapki wal | et change_pwd
-wal I et wal | et_| ocation ADM NI STER KEY MANAGEMENT ALTER KEYSTORE
[-ol dpwd password] PASSWORD | DENTI FI ED BY
[-newpwd passwor d] sof tware_keystore_ol d_passwor d
SET sof t ware_keyst ore_new_passwor d
[WTH BACKUP [USI NG ' backup_identifier']];
For hardware keystores, you close the keystore,
change it in the hardware security module
interface, and then reopen the keystore.
Backing up a Not available
password-based ADM NI S‘TER KEY IVANAGENENT BACKUP KEYSTORE
software keystore [USING ' backup_i dentifier'] |DENTIFIED BY
sof t war e_keyst ore_passwor d
[TO 'keystore_location'];
Merging two software Not available
keystores into a third ADM NI STER KEY MANA‘GENENT MERGE KEYSTORE
new keystore keystorel_| ocation' [IDENTIFIED BY
sof t ware_keyst orel_passwor d]
AND KEYSTORE ' keystore2_| ocati on'
[1 DENTI FI ED BY sof t war e_keyst or e2_passwor d]
| NTO NEW KEYSTORE ' keyst ore3_| ocati on'
| DENTI FI ED BY sof t ware_keyst ore3_passwor d;
Merging one software Not available

keystore into another
existing keystore

Setting or rotating the
master encryption key

For software wallets:

ALTER SYSTEM SET ENCRYPTI ON KEY
["certificate | D'] | DENTIFIED
BY keyst ore_passwor d;

For hardware security modules:

ALTER SYSTEM SET ENCRYPTI ON KEY
| DENTI FI ED BY
"user _i d: passwor d"

Note: The ALTER SYSTEM SET
ENCRYPTI ON KEY statement does
not update the V

$ENCRYPTI ON_KEYS dynamic

view after you rotate the encryption

key.

ADM NI STER KEY MANAGEMENT MERGE KEYSTORE
"keystorel | ocation' [|DENTIFIED BY

sof t ware_keyst orel_passwor d]

I NTO EXI STNG KEYSTORE ' keyst ore2_| ocati on'
| DENTI FI ED BY sof t ware_keyst or e2_passwor d
[WTH BACKUP [USI NG ' backup_identifier']];

ADM NI STER KEY MANAGEMENT

SET ENCRYPTI ON KEY [USI NG TAG 'tag']

| DENTI FI ED BY keyst ore_password

W TH BACKUP [USI NG ' backup_identifier']
[CONTAINER = ALL | CURRENT];

After you rotate the encryption key, the V
$ENCRYPTI ON_KEYS dynamic view is updated.

General Considerations of Using Transparent Data Encryption 5-7

How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Table 5-1 (Cont.) How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT
. __|

Behavior ALTER SYSTEM or ADMINISTER KEY MANAGEMENT
orapki
Creating a master Not available
encryption key for ADM NI STER KEY MANAGEMENT CREATE KEY
later user [USING TAG ' tag']
| DENTI FI ED BY keyst ore_passwor d
[W TH BACKUP [USI NG ' backup_i dentifier']]
[CONTAI NER = (ALL| CURRENT)];
Activating a master Not available
encryption key ADM N! STER. K!EY MANAGEMENT USE KEY
"key_identifier' [USING TAG 'tag']
| DENTI FI ED BY keyst ore_password
[WTH BACKUP [USI NG ' backup_identifier']];
Creating custom tags ~ Not available L
for master encryption ADM INl STER KEY NANAC’ENENT 'SEI' TAG "tag
keys FOR ' master_key_identifier
| DENTI FI ED BY keyst ore_passwor d
[WTH BACKUP [USI NG ' backup_identifier']];
Exporting a master Not available
encryption key ADM NI STER KEY MANAGEMENT
EXPORT [ENCRYPTION] KEYS
W TH SECRET "export_secret”
TO "file_path'
| DENTI FI ED BY sof t ware_keyst ore_passwor d
[WTH IDENTIFIER IN
"key_idl', 'key_id2', 'key_idn" |
(SQ_query)]
Importing a master Not available

encryption key

5-8 Oracle Database Advanced Security Guide

ADM NI STER KEY MANAGEMENT

| MPORT [ENCRYPTI ON] KEYS

W TH SECRET "inport_secret" |

FROM ' fil e_nane'

| DENTI FI ED BY sof t ware_keyst ore_passwor d

[W TH BACKUP [USI NG ' backup_identifier']];

Using Transparent Data Encryption with PKI Encryption

Table 5-1 (Cont.) How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT
. __|

Behavior ALTER SYSTEM or ADMINISTER KEY MANAGEMENT
orapki
Storing Oracle Not available For software keystores:

Database secrets in a
keystore

ADM NI STER KEY MANAGEMENT

ADD SECRET| UPDATE SECRET| DELETE SECRET
"secret" FOR CLIENT 'client_identifier'
[USING TAG tag']

| DENTI FI ED BY keyst ore_passwor d

[WTH BACKUP [USI NG ' backup_i dentifier'];

For hardware keystores:

ADM NI STER KEY MANAGEMENT

ADD SECRET| UPDATE SECRET| DELETE SECRET
"secret" FOR CLIENT 'client_identifier'

[USING TAG 'tag']

| DENTI FI ED BY "user _i d: passwor d"

[WTH BACKUP [USI NG ' backup_i dentifier'];

5.6 Using Transparent Data Encryption with PKI Encryption

PKI encryption is deprecated, but if you are still using it, then there are several issues

you must consider.

Topics:

Software Master Encryption Key Use with PKI Key Pairs (page 5-9)
TDE Tablespace and Hardware Keystores with PKI Encryption (page 5-10)

Backup and Recovery of a PKI Key Pair (page 5-10)

Note:

The use of PKI encryption with Transparent Data Encryption is deprecated. To
configure Transparent Data Encryption, use the ADM NI STER KEY

MANAGEMENT SQL statement.

5.6.1 Software Master Encryption Key Use with PKI Key Pairs

A master encryption key can be an existing key pair from a PKI certificate designated
for encryption.

Note the following:

If you have already deployed PKI in your organization, then you can use PKI
services such as key escrow and recovery. However, encryption using current PKI
algorithms requires significantly more system resources than symmetric key
encryption. Using a PKI key pair as a master encryption key may result in greater
performance degradation when accessing encrypted columns in the database.

For PKI-based keys, certificate revocation lists are not enforced because enforcing
certificate revocation may lead to losing access to all of the encrypted information

General Considerations of Using Transparent Data Encryption 5-9

Using Transparent Data Encryption with PKI Encryption

in the database. However, you cannot use the same certificate to create the master
encryption key again.

5.6.2 TDE Tablespace and Hardware Keystores with PKI Encryption

PKI encryption is a cryptographic system that uses two keys, a public key and a
private key, to encrypt data.

You cannot use PKI-based encryption with TDE tablespace encryption or with
hardware keystores.

5.6.3 Backup and Recovery of a PKI Key Pair

For software keystores, Transparent Data Encryption supports the use of PKI
asymmetric key pairs as master encryption keys for column encryption.

This enables the database to use existing key backup, escrow, and recovery facilities
from leading certificate authority vendors.

In current key escrow or recovery systems, the certificate authority with key recovery
capabilities typically stores a version of the private key, or a piece of information that
helps recover the private key. If the private key is lost, then you can recover the
original key and certificate by contacting the certificate authority and initiating a key
recovery process.

Typically, the key recovery process is automated and requires the user to present
certain authenticating credentials to the certificate authority. TDE puts no restrictions
on the key recovery process other than that the recovered key and its associated
certificate be a PKCS#12 file that can be imported into an keystore. This requirement is
consistent with the key recovery mechanisms of leading certificate authorities.

After obtaining the PKCS#12 file with the original certificate and private key, you
must create an empty keystore in the same location as the previous keystore. You can
then import the PKCS#12 file into the new keystore by using the same utility. Choose a
strong password to protect the keystore.

After you use the ADM NI STER KEY MANAGEMENT statements to create the keystore
and import the correct encryption keys, log in to the database and run the following
ALTER SYSTEMstatement at the SQL prompt to complete the recovery process:

ALTER SYSTEM SET ENCRYPTI ON KEY "cert _i d" | DENTI FI ED BY keyst ore_passwor d;
In this specification:

e cert_idis the certificate ID of the certificate to be used as the master encryption
key.

e keystore_password is a password that you create.

Note:

You must use the ALTER SYSTEMstatement to regenerate encryption keys for
PKI key pairs only. This restriction does not apply to non-PKI encryption
keys.

5-10 Oracle Database Advanced Security Guide

6

Using Transparent Data Encryption
with Other Oracle Features

You can use Oracle Data Encryption with other Oracle features, such as Oracle Data
Guard or Oracle Real Application Clusters.

Topics:

How Transparent Data Encryption Works with Export and Import Operations
(page 6-1)

How Transparent Data Encryption Works with Oracle Data Guard (page 6-4)

How Transparent Data Encryption Works with Oracle Real Application Clusters
(page 6-4)

How Transparent Data Encryption Works with SecureFiles (page 6-6)

How Transparent Data Encryption Works in a Multitenant Environment
(page 6-7)

How Transparent Data Encryption Works with Oracle Call Interface (page 6-16)
How Transparent Data Encryption Works with Editions (page 6-16)

Configuring Transparent Data Encryption to Work in a Multidatabase
Environment (page 6-16)

6.1 How Transparent Data Encryption Works with Export and Import

Operations

You can use Oracle Data Pump to export and import tables that contain encrypted
columns, as well as encrypt entire dump sets.

Topics:

About Exporting and Importing Encrypted Data (page 6-1)
Exporting and Importing Tables with Encrypted Columns (page 6-2)

Using Oracle Data Pump to Encrypt Entire Dump Sets (page 6-3)

6.1.1 About Exporting and Importing Encrypted Data

You can use Oracle Data Pump to export and import tables that have encrypted
columns.

For both software and hardware keystores, the following points are important when
you must export tables containing encrypted columns:

Using Transparent Data Encryption with Other Oracle Features 6-1

How Transparent Data Encryption Works with Export and Import Operations

Sensitive data should remain unintelligible during transport.

Authorized users should be able to decrypt the data after it is imported at the
destination.

When you use Oracle Data Pump to export and import tables containing encrypted
columns, it uses the ENCRYPTI ON parameter to enable encryption of data in dump file
sets. The ENCRYPTI ON parameter allows the following values:

ENCRYPTED_CCOLUMNS_ONLY: Writes encrypted columns to the dump file set in
encrypted format

DATA_ONLY: Writes all of the data to the dump file set in encrypted format

METADATA_ONLY: Writes all of the metadata to the dump file set in encrypted
format

ALL: Writes all of the data and metadata to the dump file set in encrypted format

NONE: Does not use encryption for dump file sets

6.1.2 Exporting and Importing Tables with Encrypted Columns

You can export and import tables with encrypted columns using the
ENCRYPTI ON=ENCRYPTED_COLUWNS_ONLY setting.

1.

Ensure that the keystore is open before you attempt to export tables containing
encrypted columns.

In a multitenant environment, if you are exporting data in a pluggable database
(PDB), then ensure that the wallet is open in the PDB. If you are exporting into the
root, then ensure that the wallet is open in the root.

To find if the keystore is open, query the STATUS column of the V
$ENCRYPTI ON_WALLET view. If you must open the keystore, then run the
following SQL statement:

ADM NI STER KEY MANAGEMENT SET KEYSTORE OPEN | DENTI FI ED BY
sof tware_keystore_password [CONTAINER = ALL | CURRENT];

The sof t war e_keyst or e_passwor d setting is the password for the keystore.
The keystore must be open because the encrypted columns must be decrypted
using the TDE table keys, which requires access to the TDE master encryption
key. The columns are reencrypted using a password, before they are exported.

Run the EXPDP command, using the ENCRYPTI ON_PASSWORD parameter to
specify a password that is used to encrypt column data in the export dump file
set.

The following example exports the enpl oyee_dat a table. The

ENCRYPTI ON_PWD_PROMPT = YES setting enables you to prompt for the
password interactively, which is a recommended security practice.

expdp hr TABLES=enpl oyee_data DI RECTORY=dpunp_di r

DUNPFI LE=dpcd2bel. dnp ENCRYPTI ON=ENCRYPTED_COLUMNS_ ONLY

ENCRYPTI ON_PVD_PROMPT = YES

Password: password_for _hr

6-2 Oracle Database Advanced Security Guide

How Transparent Data Encryption Works with Export and Import Operations

3. To import the exported data into the target database, ensure that you specify the
same password that you used for the export operation, as set by the
ENCRYPTI ON_PASSWORD parameter.

The password is used to decrypt the data. Data is reencrypted with the new TDE
table keys generated in the target database. The target database must have the
keystore open to access the TDE master encryption key. The following example
imports the enpl oyee_dat a table:

i mpdp hr TABLES=enpl oyee_data DI RECTORY=dpunp_di r
DUVPFI LE=dpcd2bel. dnp
ENCRYPTI ON_PVID_PROMPT = YES

Password: password_for _hr

6.1.3 Using Oracle Data Pump to Encrypt Entire Dump Sets

Oracle Data Pump can encrypt entire dump sets, not just Transparent Data Encryption
columns.

While importing, you can use either the password or the keystore TDE master
encryption key to decrypt the data. If the password is not supplied, then the TDE
master encryption key in the keystore is used to decrypt the data. The keystore must
be present and open at the target database. The open keystore is also required to
reencrypt column encryption data at the target database.

You can use the ENCRYPTI ON_MODE=TRANSPARENT setting to transparently encrypt
the dump file set with the TDE master encryption key stored in the keystore. A
password is not required in this case. The keystore must be present and open at the
target database, and it must contain the TDE master encryption key from the source
database for a successful decryption of column encryption metadata during an import
operation.

The open keystore is also required to reencrypt column encryption metadata at the
target database. If a keystore already exists on the target database, then you can export
the current TDE master encryption key from the keystore of the source database and
import it into the keystore of the target database.

¢ Use the ENCRYPTI ON_MODE parameter to specify the encryption mode.
ENCRYPTI ON_MODE=DUAL encrypts the dump set using the TDE master
encryption key stored in the keystore and the password provided.

For example, to use dual encryption mode to export encrypted data:

expdp hr DI RECTORY=dpunp_di r1 DUMPFI LE=hr _enc. dnp
ENCRYPTI ON=al | ENCRYPTI ON_PASSWORD=encr ypt i on_passwor d
ENCRYPTI ON_ALGORI THVEAES256 ENCRYPTI ON_MODE=dual

Passwor d: password_for_hr

See Also:
* Exporting and Importing the TDE Master Encryption Key (page 4-33)

® Oracle Database Utilities for details on using Oracle Data Pump and the
associated encryption parameters

® Creating an Encrypted Column in an External Table (page 3-21)

Using Transparent Data Encryption with Other Oracle Features 6-3

How Transparent Data Encryption Works with Oracle Data Guard

6.2 How Transparent Data Encryption Works with Oracle Data Guard

For both software keystores and hardware keystores, Oracle Data Guard supports
Transparent Data Encryption (TDE).

If the primary database uses TDE, then each standby database in a Data Guard
configuration must have a copy of the encryption keystore from the primary database.
If the primary database uses TDE, then each standby database in a Data Guard
configuration must have an encryption keystore with the keystore from the primary
database merged into it. If you reset the TDE master encryption key in the primary
database, then you must merge the keystore on the primary database that contains the
TDE master encryption key to each standby database.

Note the following:

¢ Encrypted data in log files remains encrypted when data is transferred to the
standby database. Encrypted data also stays encrypted during transit.

e TDE works with SQL*Loader direct path loads. The data loaded into encrypted
columns is transparently encrypted during the direct path load.

* Materialized views work with TDE tablespace encryption. You can create both
materialized views and materialized view logs in encrypted tablespaces.
Materialized views also work with TDE column encryption.

See Also:
* Merging Software Keystores (page 4-6)

e Oracle Data Guard Concepts and Administration more information about the
use of TDE with logical standby databases

® Oracle Database Advanced Replication for more information about
materialized views

® Oracle Key Vault Administrator’s Guide for information about how to use
TDE with Oracle Data Guard in an Oracle Key Vault environment

6.3 How Transparent Data Encryption Works with Oracle Real Application

Clusters

Oracle Real Application Clusters (Oracle RAC) nodes can share software keystores.
Hardware security module keystores must be shared by using a network connection.
You can store software keystores on non-shared file systems in Oracle RAC.

Topics:

* About Using Transparent Data Encryption with Oracle Real Application Clusters
(page 6-5)

* Using a Non-Shared File System to Store a Software Keystore in Oracle RAC
(page 6-5)

6-4 Oracle Database Advanced Security Guide

How Transparent Data Encryption Works with Oracle Real Application Clusters

See Also:

Oracle Key Vault Administrator’s Guide for information about using TDE with
Oracle RAC in an Oracle Key Vault environment

6.3.1 About Using Transparent Data Encryption with Oracle Real Application Clusters

Oracle Database enables Oracle Real Application Clusters nodes to share a software
keystore. Hardware security modules use a network connection for each database
instance.

This eliminates the need to manually copy and synchronize the software keystore
across all of the nodes. Oracle recommends that you create the software keystore on a
shared file system. This enables all of the instances to access the same shared software
keystore. If you configure Oracle RAC to use Automatic Storage Management (ASM),
then store the keystore on the ASM disk group.

For hardware security modules, use a network connection for each database instance.
Thus, all database instances have access to the hardware security module.

Keystore operations that must be performed or synchronized on all of the instances,
such as opening or closing the keystore or rekeying can be performed on any one
Oracle RAC instance. The synchronization operation applies to all of the other Oracle
RAC instances in the cluster. This means that when you open and close a keystore for
one instance, then it opens and closes for all of the Oracle RAC instances. Similarly, a
TDE master encryption key rekey operation that you perform on one database
instance applies to all of the database instances. You can perform other keystore
operations, such as exporting TDE master encryption keys, rotating the keystore
password, merging keystores, or backing up keystores, from a single instance only.

When using a shared file system, ensure that the ENCRYPTI ON_WALLET_LOCATI ON
or WALLET_LOCATI ON parameter setting in the sgl net . or a file for all of the Oracle
RAC instances point to the same shared software keystore location. You also must
ensure security of the shared software keystore by assigning the appropriate directory
permissions.

6.3.2 Using a Non-Shared File System to Store a Software Keystore in Oracle RAC

If you do not use a shared file system to store the software keystore, then you must
copy the keystore to the associated nodes.

1. Log in to the database instance as a user who has been granted the ADM NI STER
KEY MANAGEMENT or SYSKMprivilege.

In a multitenant environment, log in to the root or the appropriate PDB. For
example:

sql pl us sec_adm n@rpdb as syskm
Enter password: password
Connect ed.

2. Reset the TDE master encryption key on the first Oracle Real Application Clusters
(Oracle RAC) node.

See Setting and Resetting the TDE Master Encryption Key in the Keystore
(page 4-29) for more information.

3. Copy the keystore file with the new TDE master encryption key from the first
node to all of the other nodes.

Using Transparent Data Encryption with Other Oracle Features 6-5

How Transparent Data Encryption Works with SecureFiles

To find the keystore file location, query the WRL_ PARAMETER column in the V
$ENCRYPTI ON_WALLET view. To find the WRL_ PARAMETER settings for all of the
database instances, query the GV$ENCRYPTI ON_WALLET view.

4. Close and then reopen the keystore on any node. (If you are using a multitenant
container database (CDB), then run these statements in the root.)

ADM NI STER KEY MANAGEMENT SET KEYSTORE CLOSE | DENTI FI ED BY
sof t war e_keyst ore_passwor d;

ADM NI STER KEY MANAGEMENT SET KEYSTORE OPEN | DENTI FI ED BY
sof tware_keyst ore_password [CONTAINER = ALL | CURRENT];

Note:

Any keystore operation, such as opening or closing the keystore, performed
on any one Oracle RAC instance applies to all other Oracle RAC instances.
This is true even if you are not using a shared file system.

All of the Oracle RAC nodes are now configured to use the new TDE master
encryption key.

See Also:
¢ Step 3: Open the Software Keystore (page 3-7)

* C(Closing a Software Keystore (page 4-18)

6.4 How Transparent Data Encryption Works with SecureFiles

You can use SecureFiles to store LOBS. SecureFile storage has three features:
compression, deduplication, and encryption.

Topics:
* Example: Creating a SecureFiles LOB with a Specific Encryption Algorithm
(page 67)
e Example: Creating a SecureFiles LOB with a Column Password Specified
(page 6-7)
See Also:

Oracle Database SecureFiles and Large Objects Developer’s Guide for more
information about SecureFiles encryption

6.4.1 About Transparent Data Encryption and SecureFiles

SecureFiles encryption uses TDE to provide the encryption facility for LOBs.

When you create or alter tables, you can specify the SecureFiles encryption or LOB
columns that must use the SecureFiles storage. You can enable the encryption for a
LOB column by either using the current Transparent Data Encryption (TDE) syntax or

6-6 Oracle Database Advanced Security Guide

How Transparent Data Encryption Works in a Multitenant Environment

by using the ENCRYPT clause as part of the LOB parameters for the LOB column. The
DECRYPT option in the current syntax or the LOB parameters turn off encryption.

6.4.2 Example: Creating a SecureFiles LOB with a Specific Encryption Algorithm
The CREATE TABLE statement can create a SecureFiles LOB with encryption specified.

Example 6-1 (page 6-7) shows how to create a SecureFiles LOB in a CREATE TABLE
statement.

Example 6-1 Creating a SecureFiles LOB with a Specific Encryption Algorithm

CREATE TABLE tablel (a BLOB ENCRYPT USI NG ' AES256")
LOB(a) STORE AS SECUREFI LE (
CACHE
);
6.4.3 Example: Creating a SecureFiles LOB with a Column Password Specified
The CREATE TABLE statement can create a SecureFiles LOB with a column password.

Example 6-2 (page 6-7) shows an example of creating a SecureFiles LOB that uses
password protections for the encrypted column.

All of the LOBS in the LOB column are encrypted with the same encryption
specification.

Example 6-2 Creating a SecureFiles LOB with a Column Password Specified

CREATE TABLE tablel (a VARCHAR2(20), b BLOB)
LOB(b) STORE AS SECUREFI LE (
CACHE
ENCRYPT USI NG ' AES192' | DENTI FI ED BY passwor d

)s

6.5 How Transparent Data Encryption Works in a Multitenant Environment

In a multitenant environment, the TDE operations that you can perform depend on
whether you are in the root or a PDB.

Topics:

¢ About Using Transparent Data Encryption in a Multitenant Environment

(page 6-8)
® Operations That Must Be Performed in Root (page 6-8)
* Operations That Can Be Performed in Root or in a PDB (page 6-10)
e Exporting and Importing TDE Master Encryption Keys for a PDB (page 6-10)
¢ Unplugging and Plugging a PDB with Encrypted Data in a CDB (page 6-12)

e How Keystore Open and Close Operations Work in a Multitenant Environment
(page 6-14)

¢ Finding the Keystore Status for All of the PDBs in a Multitenant Environment
(page 6-15)

Using Transparent Data Encryption with Other Oracle Features 6-7

How Transparent Data Encryption Works in a Multitenant Environment

6.5.1 About Using Transparent Data Encryption in a Multitenant Environment

You can use Transparent Data Encryption for both columns and tablespaces in a
multitenant environment.

Note the following:

The keystore that you create resides in the host multitenant environment, not
within any particular PDB. Multiple PDBs can access a single keystore while
running on this host. Each PDB that uses encryption has a Transparent Data
Encryption TDE master encryption key stored in this keystore.

Each PDB has its own TDE master encryption key. You must manage the TDE
master encryption key for each PDB from within the PDB only, using the PDB-
specific key management ADM NI STER KEY MANAGEMENT statements. From the
root or a PDB, you can query the appropriate views to find information about the
TDE master encryption keys of the PDBs in a CDB. For example, the PDBI D
column of the VEENCYRYPTI ON_KEYS view indicates the PDBs to which a TDE
master encryption key belongs.

You can manage the Transparent Data Encryption TDE master encryption keys
independently within the keystore for each PDB. You can rotate the TDE master
encryption keys for each PDB individually. See "Exporting and Importing the TDE
Master Encryption Key (page 4-33)" for more information.

You perform most of the keystore operations from the root. Keystore operations
such as rotating a keystore password, merging keystores, and so on must be
performed in the root. There are a few key management operations that you can
perform within a PDB, such as opening, closing, resetting, and creating keys. The
operations can also be performed for all of the PDBs from the root. Where
applicable, the ADM NI STER KEY MANAGEMENT statement has the CONTAI NER
clause. Setting CONTAI NER=ALL performs the action on all of the PDBs.

See the following sections for more information:
— "Operations That Must Be Performed in Root (page 6-8)"
— "Operations That Can Be Performed in Root or in a PDB (page 6-10)"

If you plan to move a PDB that uses Transparent Data Encryption to a new host
computer, then you must move its TDE master encryption key as well. To move
the TDE master encryption key from one host computer to another, use the
procedures described in "Exporting and Importing the TDE Master Encryption
Key (page 4-33)".

6.5.2 Operations That Must Be Performed in Root

You must perform specific ADM Nl STER KEY MANAGEMENT keystore operations only
in the root.

These operations are as follows:

Creating password-based software keystores, using the ADM NI STER KEY
MANAGEMENT CREATE KEYSTORE statement

Creating auto-login software keystores, using the ADM Nl STER KEY
MANAGEMENT CREATE [LOCAL] AUTO LOGd N KEYSTORE FROM KEYSTORE
statement

6-8 Oracle Database Advanced Security Guide

How Transparent Data Encryption Works in a Multitenant Environment

¢ Changing the software keystore password, using the ADM Nl STER KEY
MANAGEMENT ALTER KEYSTORE PASSWORD statement

* Merging software keystores, using the ADM NI STER KEY MANAGEMENT MERGE
KEYSTORE statement

* Backing up software keystores, using the ADM Nl STER KEY MANAGEMENT
BACKUP KEYSTORE keystore

* Migrating from a software keystore to a hardware keystore, using the
ADM NI STER KEY MANAGEMENT SET ENCRYPTI ON KEY... M GRATE
US| NGstatement

* Reverse migrating from a hardware security module to a software keystore,
using the ADM NI STER KEY NMANAGEMENT SET ENCRYPTI ON KEY. . .
REVERSE M GRATE statement

¢ Adding, updating, and deleting secrets, using the ADM NI STER KEY
MANAGEMENT ADD| UPDATE| DELETE SECRET statement

* Selectively exporting and importing keys, based on a query or identifier list

How the CONTAINER=ALL Setting Works for Key and Keystore Operations

You can specify the CONTAI NER=ALL setting for the key and keystore operations
described in this section. Specifying the CONTAI NER=ALL setting performs the same
operation on all of the PDBs within the CDB. Remember that you can only use the
CONTAI NER=ALL setting in the root. The CONTAI NER clause is optional. If you omit

the CONTAI NER clause, then the default is CONTAI NER = CURRENT.
The permitted CONTAI NER=ALL operations are as follows:

Opening a keystore. If you open the keystore using the CONTAI NER=ALL setting,
then the keystores on all of the associated PDBs open.

Closing a keystore. Closing a keystore using the CONTAI NER=ALL setting closes
the keystores on all of the associated PDBs.

Creating a TDE master encryption key. Creating a TDE master encryption key
using the CONTAI NER=ALL setting creates the key on all of the PDBs that are
open. You can check the keys that were created recently by querying the

CREATI ON_TI ME column in the VSENCRYPTI ON_KEYS view. You can also
specify a tag with CONTAI NER=ALL operation, but be aware that this operation
creates the keys in all of the PDBs with the same tag. You should have individual
tags for each TDE master encryption key, because the tags can help identify PDBs
on which the create key operation succeeded in case of an error. You can modify
the tag by using the ADM NI STER KEY MANAGEMVENT SET TAGstatement later
on.

Performing a rekey operation. Performing a rekey operation with the

CONTAI NER=ALL setting creates and then activates the key on all of the PDBs that
are open. You can check the keys that were created recently by querying the
CREATI ON_TI ME column in the VSENCRYPTI ON_KEYS view. To find the keys
that were activated recently, query the ACTI VATI ON_TI ME column in the V
$SENCRYPTI ON_KEYS view. You can also specify a tag with CONTAI NER=ALL
operation, but be aware that this operation creates the keys in all of the PDBs with
the same tag. The tag can also help identify PDBs on which the create key
operation succeeded in case of an error. You can modify the tag by using the

ADM NI STER KEY MANAGEMENT SET TAGstatement later on.

Using Transparent Data Encryption with Other Oracle Features 6-9

How Transparent Data Encryption Works in a Multitenant Environment

6.5.3 Operations That Can Be Performed in Root or in a PDB

You can perform the some keystore operations in either the root or a PDB.

These operations are as follows:

* Opening keystores, using the ADM Nl STER KEY MANAGEMENT SET KEYSTORE
OPEN statement

* Closing keystores, using the ADM Nl STER KEY MANAGEMENT SET KEYSTORE
CLOSE statement

You can perform the following key management operations either in the root or a
PDB:

¢ Creating a tag for the TDE master encryption key, using the ADM NI STER KEY
MANAGEMENT SET TAGstatement

* Creating a TDE master encryption key, using the ADM NIl STER KEY
MANAGEMENT CREATE KEY statement

* Resetting or rotating the TDE master encryption key, using the ADM NI STER
KEY MANAGEMENT SET ENCRYPTI ON KEY statement

* Activating a TDE master encryption key, using the ADM NI STER KEY
MANAGEMENT USE KEY statement

¢ Exporting TDE master encryption keys, using the ADM NI STER KEY
MANAGEMENT EXPORT ENCRYPTI ON KEYS statement

¢ Importing TDE master encryption keys, using the ADM NI STER KEY
MANAGEMENT | MPORT ENCRYPTI ON KEYS statement

6.5.4 Exporting and Importing TDE Master Encryption Keys for a PDB

To export or import TDE master encryption keys for a PDB, you use the ADM NI STER
KEY NMANAGEMENT EXPORT and ADM NI STER KEY MANAGEMENT | MPORT
statements.

Topics:

e About Exporting and Importing TDE Master Encryption Keys for a PDB
(page 6-10)

* Exporting or Importing a TDE Master Encryption Key for a PDB (page 6-11)

e Example: Exporting a TDE Master Encryption Key from a PDB (page 6-12)

* Example: Importing a TDE Master Encryption Key into a PDB (page 6-12)

6.5.4.1 About Exporting and Importing TDE Master Encryption Keys for a PDB

You can export and import any TDE master encryption key from the root in the same
way that you export and import the TDE master encryption key for a non-CDB
database.

You can export and import all of the TDE master encryption keys that belong to the
PDB by exporting and importing the TDE master encryption keys from within a PDB.
Export and import of TDE master encryption keys in a PDB supports the PDB unplug

6-10 Oracle Database Advanced Security Guide

How Transparent Data Encryption Works in a Multitenant Environment

and plug operations. During a PDB unplug and plug, all of the TDE master encryption
keys that belong to a PDB, as well as the metadata, are involved. Therefore, the W TH

| DENTI FI ER clause of the ADM NI STER KEY MANAGEMENT EXPORT statement is
not allowed when you export keys from within a PDB. The W TH | DENTI FI ERclause
is only permitted in the root.

You should include the FORCE KEYSTCORE clause if the root has an auto-login
keystore or if the keystore is closed. If the keystore has been configured to use an
external store for the password, then use the | DENTI FI ED BY EXTERNAL STORE
clause. For example, to perform an export operation for this scenario:

ADM NI STER KEY MANAGEMENT EXPORT KEYS W TH SECRET "my_secret”
TO '/ etc/ TDE export. exp'
FORCE KEYSTORE | DENTI FI ED BY EXTERNAL STORE;

This ADM NI STER KEY MANAGEMENT EXPORT operation exports not only the keys
but creates metadata that is necessary for PDB environments (as well as for cloning
operations).

Inside a PDB, the export operation of TDE master encryption keys exports the keys
that were created or activated by a PDB with the same GUID as the PDB where the
keys are being exported. Essentially, all of the keys that belong to a PDB where the
export is being performed will be exported.

The importing of TDE master encryption keys from an export file within a PDB takes
place only if the TDE master encryption key was exported from another PDB with the
same GUID. To support the plug-in of a PDB into a CDB, the import will also import
the TDE master encryption keys from an export file that contains the TDE master
encryption keys of a non-CDB exported without the W TH | DENTI FI ER clause.
Because the PDB-specific details, such as the PDB name and database ID, can change
from one CDB to the next, the PDB-specific information is modified during the import
to reflect the updated PDB information.

Note:

Within a PDB, you can only export the keys of a PDB as a whole. The ability to
export them selectively based on a query or an identifier is restricted to the
root.

6.5.4.2 Exporting or Importing a TDE Master Encryption Key for a PDB

To export or import a TDE master encryption for a PDB, you must open the keystore
and then use the ADM NI STER KEY MANAGEMENT statement with the EXPORT
ENCRYPTI ON KEYS W TH SECRET or | MPORT ENCRYPTI ON KEYS W TH SECRET
clause.

1. Login to the PDB as a user who was granted the ADM NI STER KEY
MANAGEMENT or SYSKMprivilege.

For example:

sql plus sec_adm n@r _pdb as syskm
Enter password: password
Connect ed.

To find the available PDBs, query the DBA_PDBS data dictionary view. To check
the current PDB, run the show con_nane command.

Using Transparent Data Encryption with Other Oracle Features 6-11

How Transparent Data Encryption Works in a Multitenant Environment

2. Ensure that the keystore is open.

You can query the STATUS column of the VSENCRYPTI ON_WALLET view to find if
the keystore is open.

If you find that you must open the keystore, then see "Step 3: Open the Software
Keystore (page 3-7)".

3. Perform the export or import operation, as shown in the examples in "Example:
Exporting a TDE Master Encryption Key from a PDB (page 6-12)".

6.5.4.3 Example: Exporting a TDE Master Encryption Key from a PDB

You can use the ADM NI STER KEY MANAGEMENT EXPORT ENCRYPTI ON KEYS SQL
statement to export TDE master encryption keys for a PDB.

Example 6-3 (page 6-12) shows how to export a TDE master encryption key from the
PDB hr _pdb1l.

Example 6-3 Exporting a TDE Master Encryption Key from a PDB

sql pl us sec_adnmi n@r _pdbl as syskm
Enter password: password
Connect ed.

ADM NI STER KEY MANAGEMENT EXPORT ENCRYPTI ON KEYS W TH SECRET "ny_secret" TO '/
export.pl2' |DENTIFIED BY password_cdbl;

6.5.4.4 Example: Importing a TDE Master Encryption Key into a PDB

You can use the ADM NI STER KEY MANAGEMENT | MPORT ENCRYPTI ON KEYS SQL
statement to import a TDE master encryption key into a PDB.

Example 6-4 (page 6-12) shows how to import a TDE master encryption key into the
PDB hr _pdb2.

Example 6-4 Importing a TDE Master Encryption Key into a PDB

sql pl us sec_adni n@r _pdb2 as syskm
Enter password: password
Connect ed.

ADM NI STER KEY MANAGEMENT | MPORT ENCRYPTI ON KEYS W TH SECRET "ny_secret" FROM'/tnp/
export.pl2' |DENTIFIED BY password_cdb2 W TH BACKUP;

6.5.5 Unplugging and Plugging a PDB with Encrypted Data in a CDB

You can add or remove PDBs that have encrypted data to and from a CDB.

6.5.5.1 Unplugging a PDB That Has Encrypted Data
You can unplug a PDB from one CDB and then plug it into another CDB.

The database that was unplugged contains data files and other associated files. The
export file is another file that forms part of the unplugged PDB files and should be
transported with the unplugged PDB.

1. Export the TDE master encryption key of the PDB that you want to unplug.
See Exporting and Importing TDE Master Encryption Keys for a PDB (page 6-10).

2. Unplug the PDB, as described in Oracle Database Administrator’s Guide.

6-12 Oracle Database Advanced Security Guide

How Transparent Data Encryption Works in a Multitenant Environment

Note:

If you inadvertently unplug the PDB without first exporting the TDS master
encryption key, the encryption key is not lost. This information is still in the
database. Plug the PDB back into the CDB, export the TDE master encryption
key, and then unplug the PDB.

6.5.5.2 Plugging a PDB That Has Encrypted Data into a CDB

To plug a PDB that has encrypted data into a CDB, you must import the TDE master
encryption key into the PDB and then configure it there.

1. Create the PDB by plugging the unplugged PDB into the CDB, as described in
Oracle Database Administrator’s Guide.

During the open operation of the PDB after the plug operation, Oracle Database
determines if the PDB has encrypted data. If so, it opens the PDB in the
RESTRI CTED mode.

See Oracle Database Administrator’s Guide for more information about the Open
Mode of a PDB.

2. Import the TDE master encryption key into the PDB.

See "Exporting and Importing TDE Master Encryption Keys for a PDB
(page 6-10)".

3. Close the PDB and then re-open the PDB, as described in Oracle Database
Administrator’s Guide.

4. Open the keystore.

See the following sections:
e "Step 3: Open the Software Keystore (page 3-7)"
* "Step 3: Open the Hardware Keystore (page 3-12)"

5. Set the TDE master encryption key for the PDB.

See the following sections:
* "Step 4: Set the Software TDE Master Encryption Key (page 3-8)"
* "Step 4: Set the Hardware Keystore TDE Master Encryption Key (page 3-14)"

* "Creating TDE Master Encryption Keys for Later Use (page 4-22)"

6.5.5.3 Unplugging a PDB That Has Master Keys Stored in an HSM

You can unplug a PDB from one CDB that has been configured with a hardware
security module (HSM) and then plug it into another CDB that is configured with an
HSM.

1. Unplug the PDB.
See Oracle Database Administrator’s Guide for information about unplugging PDBs.

2. Move the master keys of the unplugged PDB in the HSM that was used at the
source CDB to the HSM that is in use at the destination CDB.

Using Transparent Data Encryption with Other Oracle Features 6-13

How Transparent Data Encryption Works in a Multitenant Environment

Refer to the documentation for the HSM for information about moving master keys
between HSMs.

6.5.5.4 Plugging a PDB That Has Master Keys Stored in an HSM

You can use the ADM NI STER KEY MANAGEMENT statement to import an HSM master
key to a PDB that has been moved to another CDB.

1. Plug that unplugged PDB into the destination CDB that has been configured with
the HSM.

After the plug-in operation, the PDB that has been plugged in will be in restricted
mode. See Oracle Database Administrator’s Guide for information about plugging
PDBs.

2. Ensure that the master keys from the HSM that has been configured with the
source CDB are available in the HSM of the destination CDB.

3. Log in to the plugged PDB as a user who was granted the ADM NI STER KEY
MANAGEMENT or SYSKMprivilege.

For example:

sql pl us sec_adnmi n@r _pdb as syskm
Enter password: password
Connect ed.

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the
current PDB, run the show con_name command.

4. Open the master encryption key of the plugged PDB.

For example, for a PDB called PDBL:

ALTER SESSI ON SET CONTAI NER = PDBL,;
ADM NI STER KEY MANAGEMENT SET KEYSTORE OPEN | DENTI FI ED BY "keystore_passsword";

5. Import the HSM master key into the PDB.

ADM NI STER KEY MANAGEMENT | MPORT ENCRYPTI ON KEYS W TH SECRET "HSM' FROM ' HSM
| DENTI FI ED BY "keyst ore_passwor d";

6. Restart the PDB.

ALTER PLUGGABLE DATABASE PDB1 CLCSE;
ALTER PLUGGABLE DATABASE PDB1 OPEN;

6.5.6 How Keystore Open and Close Operations Work in a Multitenant Environment

You should be aware of how keystore open and close operations work in a multitenant
environment.

For each PDB in a multitenant environment, you must explicitly open the password-
based software keystore or hardware keystore in the PDB to enable the Transparent
Data Encryption operations to proceed. (Auto-login and local auto-login software
keystores open automatically.) Closing a keystore on a PDB blocks all of the
Transparent Data Encryption operations on that PDB.

In a CDB, the open and close keystore operations in a PDB depends on the open and
close status of the keystore in the root.

Note the following:

6-14 Oracle Database Advanced Security Guide

How Transparent Data Encryption Works in a Multitenant Environment

Before you can manually open a software password-based or hardware keystore
in an individual PDB, you must open the keystore in the root.

Before you can set a TDE master encryption key in an individual PDB, you must
set the key in the root.

Auto-login and local auto-login software keystores open automatically. You do
not need to manually open these from the root first, or from the PDB.

If you close a keystore in the root, then the keystores in the dependent PDBs also
close. A keystore close operation in the root is the equivalent of performing a
keystore close operation with the CONTAI NER clause set to ALL.

If you open a keystore in the root and set the CONTAI NER clause to ALL, then the
keystores in the dependent PDBs also open.

6.5.7 Finding the Keystore Status for All of the PDBs in a Multitenant Environment

The VSENCRYPTI ON_WALLET view displays the status of the keystore in a PDB,
whether it is open, closed, uses a software or hardware keystore, and so on. You can
create a convenience function that uses this view to find the status for keystores in all
of the PDBs in a CDB.

To create a function that uses theV$ENCRYPTI ON_WALLET view to find the
keystore status, use the CREATE PROCEDURE PL/SQL statement.

Example 6-5 (page 6-15) shows how to create this function.

Example 6-5 Function to Find the Keystore Status of All of the PDBs in a CDB

CREATE OR REPLACE PROCEDURE al | _pdb_v$encryption_wal | et

IS
err_occ
curr_pdb
pdb_nane
wrl _type
status
wal | et _type
wal | et _order
full'y_backed_up
wr | _paranet er

cursor sel _pdbs 1S SELECT NAME FROM V$CONTAI NERS

BEG N

WHERE NAME <> ' PDB$SEED order by con_id desc;

- Store the original PDB name

SELECT sys_cont ext (' userenv',

"con_nanme') | NTO curr_pdb FROM DUAL;

IF curr_pdb <> ' CDBSROOT" THEN
dbns_out put . put _I'i ne(' Operation valid in ROOT only');

END | F;

err_occ := FALSE,

dbns_out put. put _line('---");

dbns_out put . put _I i ne(" PDB_NAME WRL_TYPE STATUS ");
dbmB_0Ut PUt . PUE i NE(= - mmmm e e e ");
dbns_out put . put _| i ne(' WALLET_TYPE WALLET_ORDER FULLY_BACKED_UP');

dbns_out put. put _line(" =----mm e e ");

dbns_out put . put _I i ne(" WRL_PARAMETER) ;

dbns_out put . put

_line("

FOR pdbinfo IN sel _pdbs LOOP

Using Transparent Data Encryption with Other Oracle Features 6-15

How Transparent Data Encryption Works with Oracle Call Interface

pdb_nane : = DBMS_ASSERT. ENQUOTE_NAME(pdbi nf 0. name, FALSE);
EXECUTE | MVEDI ATE ' ALTER SESSI ON SET CONTAINER = ' || pdb_name;

BEG N
pdb_nane : = rpad(substr(pdb_nare, 1,30), 30, ' ');
EXECUTE | MVEDI ATE ' SELECT wrl _type from VSENCRYPTI ON WALLET' into wl _type;
wrl_type := rpad(substr(wl _type,1,8), 8 ' ');
EXECUTE | MVEDI ATE ' SELECT status from VSENCRYPTI ON WALLET' into status;
status := rpad(substr(status,1,30), 30, ' ");
EXECUTE | MVEDI ATE ' SELECT wal | et _type from VSENCRYPTI ON_ WALLET' into wal |l et _type;
wal | et _type := rpad(substr(wallet_type, 1,20), 20, ' ');
EXECUTE | MVEDI ATE ' SELECT wal | et _order from VSENCRYPTI ON_WALLET' into wal |l et_order;
wal | et _order := rpad(substr(wallet_order,1,9), 12, ' ');
EXECUTE | MVEDI ATE ' SELECT ful I y_backed_up from VSENCRYPTI ON_ WALLET" into fully_backed_up;
fully_backed_up := rpad(substr(fully_backed_up,1,9), 15 ' ");
EXECUTE | MVEDI ATE ' SELECT wr | _paraneter from VSENCRYPTI ON WALLET' into w | _paraneter;

wrl _paraneter := rpad(substr(wl _parameter,1,79), 79, ')_
dbns_out put. put _Iine(pdb_name || " ' || wl_type || " " || status);
dbns_out put. put _Iine(wallet_type || * " || wallet_order || " ' || fully_backed_up);

dbns_out put. put _I'i ne(wr| _parameter);

EXCEPTI ON
WHEN OTHERS THEN
err_occ := TRUE;
END;
END LOOP;

I F err_occ = TRUE THEN
dbns_out put. put_line(' One or nore PDB resulted in an error');
END | F;
END;

/
set serveroutput on
exec all_pdb_vS$encryption_wallet;

6.6 How Transparent Data Encryption Works with Oracle Call Interface
Transparent Data Encryption does not have any effect on the operation of Oracle Call
Interface (OCI).

For most practical purposes, TDE is transparent to OCI except for the row shipping
feature. You cannot use the OCI row shipping feature with TDE because the key to
make the row usable is not available at the receipt-point.

6.7 How Transparent Data Encryption Works with Editions
Transparent Data Encryption does not have any effect on the Editions feature of
Oracle Database.

For most practical purposes, TDE is transparent to Editions. Tables are always
noneditioned objects. TDE Column Encryption encrypts columns of the table. Editions
are not affected by TDE tablespace encryption.

6.8 Configuring Transparent Data Encryption to Work in a Multidatabase
Environment

Each Oracle database on the same server (such as databases sharing the same Oracle
binary but using different data files) must access its own TDE keystore.

6-16 Oracle Database Advanced Security Guide

Configuring Transparent Data Encryption to Work in a Multidatabase Environment

Keystores are not designed to be shared among databases. By design, there must be
one keystore per database. You cannot use the same keystore for more than one
database.

* To configure the sql net . or a file for a multidatabase environment, use one of
the following options:

Option 1: If the databases share the same Oracle home, then keep the
sgl net . or a file in the default location, which is in the ORACLE_HOVE/
net wor k/ admi n directory.

In this case, it is ideal to use the default location. Ensure that the sql net . or a
file has no WALLET_LOCATI ON or ENCRYPTI ON_WALLET_LOCATI ON entries.
Transparent Data Encryption accesses the keystore from the default

sql net . or a location if these two entries are not in the sql net . or a file.

Option 2: If Option 1 is not feasible for your site, then you can specify the
keystore location based on an environment variable setting, such as
ORACLE_SI D.

For example:

ENCRYPTI ON_WALLET_LOCATI ON =

(SOURCE =
(METHOD = FILE)
(METHOD DATA =

(DI RECTORY = [hone/ oracl e/ wal | et/ SORACLE_SI D)

Option 3: If Options 1 and 2 are not feasible, then use separate sql net . or a
files, one for each database. Ensure that you correctly set the TNS_ADM N
environment variable to point to the correct database configuration. See
SQL*Plus User’s Guide and Reference for more information and examples of
setting the TNS_ADM Nvariable.

Caution:

Using a keystore from another database can cause partial or complete data
loss.

Using Transparent Data Encryption with Other Oracle Features 6-17

Configuring Transparent Data Encryption to Work in a Multidatabase Environment

6-18 Advanced Security Guide

v

Frequently Asked Questions About
Transparent Data Encryption

Users frequently have questions about transparency and performance issues with
Transparent Data Encryption.

Topics:

Transparency Questions About Transparent Data Encryption (page 7-1)

Performance Questions About Transparent Data Encryption (page 7-4)

7.1 Transparency Questions About Transparent Data Encryption

Transparent Data encryption handles transparency in data in a variety of ways.

Security auditors occasionally ask detailed questions about the encryption used by
Oracle Advanced Security Transparent Data Encryption (TDE). They request
information about TDE keys, algorithms, lengths, and keystores and then directly
compare to requirements of regulations such as PCI-DSS. This topic contains
important details about TDE encryption and key management. This information is
current as of Oracle Database 12c¢ (12.1.0.2). It is intended to help TDE customers
respond to auditor questions quickly and accurately.

1.

Is Transparent Data Encryption compatible with my application software?

Transparent Data Encryption is compatible with applications by default because it
does not alter the inbound SQL statements or the outbound SQL query results.
Oracle executes internal testing and validation of certain Oracle and third-party
application software to capture helpful deployment tips or scripts, and to evaluate
performance profiles. See the following Oracle Technology Network page to find
more information about deployment scripts that you can use for various
applications.

http://ww. oracl e. com t echnet wor k/ dat abase/ opti ons/ advanced-
security/index-099011. htn

Be aware of the difference between Transparent Data Encryption and the
DBMS_CRYPTOPL/SQL package. This package is intended for different customer
use cases. It is an API and toolkit solution and as such, it is non-transparent.

Is Transparent Data Encryption compatible with other Oracle Database tools
and technologies that I am using?

One of the chief benefits of Transparent Data Encryption is its integration with
frequently used Oracle Database tools and technologies such as high-availability
clusters, storage compression, backup compression, data movement, database
backup and restore, and database replication. Specific Oracle technologies that are
integrated directly with Transparent Data Encryption include Oracle Real
Application Clusters (Oracle RAC), Oracle Recovery Manager (RMAN), Oracle

Frequently Asked Questions About Transparent Data Encryption 7-1

http://www.oracle.com/technetwork/database/options/advanced-security/index-099011.html
http://www.oracle.com/technetwork/database/options/advanced-security/index-099011.html

Transparency Questions About Transparent Data Encryption

Data Guard, Advanced Compression, Oracle Data Pump, and Oracle GoldenGate,
among others. Transparent Data Encryption also has special points of integration
with Oracle Exadata that fully use unique features of Oracle-engineered systems.

Transparent Data Encryption also works easily with security features of the
Oracle Database. With Transparent Data Encryption, privilege grants, roles,
Oracle Database Vault realms, Virtual Private Database policies, and Oracle Label
Security labels remain in effect. You can use these and other security features in
tandem with Transparent Data Encryption encryption.

3. Are there any known Transparent Data Encryption limitations or
incompatibilities?

e TDE column encryption: TDE column encryption encrypts and decrypts data
transparently when data passes through the SQL layer. Some features of
Oracle will bypass the SQL layer, and hence cannot benefit from TDE column
encryption. The following are known database features that TDE column
encryption does not support, and their relevant software version numbers:

— Materialized View Logs (not supported prior to Oracle Database 11g
Release 2)

- Streams (not supported prior to Oracle Database 11g Release 1)

- Synchronous and asynchronous change data capture for data
warehousing (CDC)

— Transportable Tablespaces

- LOBs

Note that Secure Files were introduced in Oracle Database 11g Release 1, so it
is not supported with TDE column encryption prior to that release

* TDE tablespace encryption: TDE tablespace encryption encrypts all content
that is stored in the tablespace at the block level in storage, and it generally
does not conflict with other database features. TDE tablespace encryption
does not have any of the limitations that TDE column encryption has.
However, you should be aware of the following:

- You can use full transportable tablespaces (TTS) with Oracle Data Pump
compression and encryption when going from a TDE-encrypted source to
a TDE-encrypted destination. You must have an Oracle Database Release
12c database instance available so that you can use its key export or
keystore (wallet) merge capabilities to get the correct TDE master key to
the destination database host without having to overwrite the original
Oracle wallet file. This process is subject to the standard TTS limitations,
and you must remember to check for compatible endianness.

— Do not attempt to encrypt database internal objects such as the SYSTEM
SYSAUX, UNDO, or TEMP tablespaces using TDE tablespace encryption.
You should focus TDE tablespace encryption on tablespaces that hold
application data, not on these core components of the Oracle database.

4. What types of keys and algorithms does TDE use?

TDE relies on two distinct sets of encryption keys. The first set of encryption keys
are data encryption keys (DEK), which are used to transparently encrypt and
decrypt stored data. DEKs are generated automatically by the database, stored

7-2 Oracle Database Advanced Security Guide

Transparency Questions About Transparent Data Encryption

internally in the database in encrypted form, and managed mostly behind the
scenes. One place where end-users interact with DEKs is when selecting the
encryption algorithm and key length that TDE will use, which can be 3DES168,
AES128, AES192, or AES256. This selection is made independently for each table
containing encrypted columns and for each encrypted tablespace. You may also
hear DEKSs referred to as table keys (column encryption) or tablespace keys
(tablespace encryption). The table keys are used in cipher block chaining (CBC)
operating mode, and the tablespace keys are used in cipher feedback (CFB)
operating mode.

The second set of encryption keys consists of current and historical key encryption
keys (KEK), also known as TDE master keys. The TDE master keys are generated
automatically by the database, used automatically to encrypt and decrypt DEKs as
needed, and stored externally in a protected keystore. Users may interact with the
current TDE master key by periodically rotating it, modifying certain key
attributes, and so forth. Typically, the keystore for TDE master keys is either an
Oracle wallet (out-of-the-box solution) or Oracle Key Vault (a specialized key
management product). Although the database uses only one TDE master key at a
time, all rotated TDE master keys are retained in the keystore for long-term
recovery of encrypted data backups. TDE master keys always are AES256. They
encrypt and decrypt DEKSs using CBC operating mode. For both DEKs and TDE
master keys, the underlying key material is not directly exposed. End-users see
only attributes of keys necessary to manage TDE.

How are Oracle wallets containing TDE master keys protected?

There are three different types of wallets to consider when you use an Oracle
wallet as the keystore for TDE master keys: password-based wallet, auto-login
wallet, and local auto-login wallet. All of these wallets externalize TDE master
keys, so they are separate from TDE-encrypted data. Oracle recommends that you
place wallet files in local or network directories that are protected by tight file
permissions and other security measures.

The password-based wallet is an encrypted key storage file (ewal | et . p12) that
follows the PKCS #12 standard. It is encrypted by a password-derived key
according to the PKCS #5 standard. A human user must enter a command
containing the password for the database to open the wallet, decrypt its contents,
and gain access to keys. The password-based wallet is the default keystore for
TDE master keys. In the past, it was encrypted using the 3DES168 encryption
algorithm and CBC operating mode. Starting in Oracle Database 12¢ (12.1.0.2), a
new or apki command, convert wal | et, enables you to convert password-
based wallets to AES256 and CBC operating mode. (See Oracle Database Security
Guide for more information about using or apki to convert wallets).

Auto-login wallets (cwal | et . sso) optionally are derived from standard
password-based wallets for special cases where automatic startup of the database
is required with no human interaction to enter a wallet password. When using
auto-login wallet, the master password-based wallet must be preserved because it
is needed to rotate the TDE master key. In addition to the best practice of storing
auto-login wallet in a local or network directory that is protected by tight file
permissions, the file contents are scrambled by the database using a proprietary
method for added security. A slight variation on the auto-login wallet called local
auto-login wallet has similar behavior. One notable difference with local auto-
login wallet is that its contents are scrambled using additional factors taken from
the host machine where the file was created. This renders the local auto-login
wallet unusable on other host machines. Details of the host factors and scrambling
technique are proprietary.

Frequently Asked Questions About Transparent Data Encryption 7-3

Performance Questions About Transparent Data Encryption

6. What is Oracle Key Vault and how does it manage TDE master keys?

Oracle Key Vault centrally manages TDE master keys, Oracle wallets, Java
keystores, and more. It helps you to take control of proliferating keys and key
storage files. It includes optimizations specifically for TDE and other components
of the Oracle stack. For more information about using Oracle Key Vault with TDE,
see the product pages on www.oracle.com and Oracle Technology Network and
Oracle Key Vault Administrator’s Guide.

7.2 Performance Questions About Transparent Data Encryption

There are several performance issues to consider when using Transparent Data
Encryption.

1. What is the typical performance overhead from Transparent Data Encryption?

There are many different variables involved in the creation of an accurate
Transparent Data Encryption performance test. The results can vary depending on
the test environment, test case or workload, measurement metrics or methods,
and so on. Oracle cannot guarantee a specific performance overhead percentage
that can apply in all possible scenarios. In practice, the performance tests by many
Transparent Data Encryption customers are often in the low single digits as a
percentage, but that is not universally the case. Customer examples that cite 1
percent and 2 percent overhead respectively are published on Oracle Technology
Network in the following URL:

http://stream ng. oracl e. com ebn/ podcast s/ nedi a/
12740910_Col unbi aU_120312. np3

If possible, use Oracle Real Application Testing (Oracle RAT) to capture a real
production workload and then replay it against Transparent Data Encryption to
get a true indication of the performance overhead that the you can expect within
your environment.

See also:

* Performance and Storage Overhead of Transparent Data Encryption
(page 5-3)

* Oracle Database Testing Guide for more information about the Oracle Real
Application Testing option

2. How can I tune for optimal Transparent Data Encryption performance?
* TDE column encryption:

— Limit the crypto processing by only encrypting the subset of columns
that are strictly required to be protected. In addition, turn off the optional
integrity checking feature.

— After you apply column encryption, rebuild the column indexes.

* TDE tablespace encryption: TDE tablespace encryption improves
performance by caching unencrypted data in memory in the SGA buffer
cache. This feature reduces the number of crypto operations that must be
performed when users run SELECT queries, which draw from the SGA
instead of drawing from disk. (Drawing from disk forces the database to
perform decrypt operations.) Ensure that the size of the SGA buffer cache is
large enough to take full advantage of this performance optimization.

7-4 Oracle Database Advanced Security Guide

http://streaming.oracle.com/ebn/podcasts/media/12740910_ColumbiaU_120312.mp3
http://streaming.oracle.com/ebn/podcasts/media/12740910_ColumbiaU_120312.mp3

Performance Questions About Transparent Data Encryption

Another major performance boost comes from using hardware and software
that supports CPU-based cryptographic acceleration available in Intel AES-NI
and Oracle SPARC T4/T5. To take advantage of this feature, you must be
running a recent version of the database, have a recent version of the
operating system installed, and be using hardware that includes crypto
acceleration circuitry within its CPUs/ cores.

Database compression further speeds up Transparent Data Encryption
performance because the crypto processing occurs on data that already is
compressed, resulting in less total data to encrypt and decrypt.

In general:

— Ensure that you have applied the latest patches, which you can download
from My Oracle Support at

https://support.oracle.com

— When you specify an encryption algorithm, remember that AES is
slightly faster than 3DES. Use AES128 where possible. Be aware that the
performance benefit is small.

— Use Exadata, which includes additional performance benefits. For more
information about Oracle Exadata, see Oracle Database Testing Guide.

Are there specific issues that may slow down TDE performance, and if so, how
do I avoid them?

TDE tablespace performance is slower if the database cannot use CPU-based
hardware acceleration on the host machine due to factors such as older hardware,
an older database version, or an older operating system.

Note the following with regard to specific database workloads:

Encrypting the whole data set at once (for example, while doing “Bulk Data
Load" into an Oracle data warehouse): Lower crypto performance has been
observed during bulk load of new data into the database or data warehouse.
New data cannot be cached in SGA, so TDE tablespace encryption
performance optimizations are bypassed. Hence, Transparent Data
Encryption has no bonus performance benefits in this type of operation.

Follow these guidelines:

— Ensure that the database is running on servers with CPU-based
cryptographic acceleration. This accelerates not only decrypt operations,
but also encrypt operations as well (for loading new data). Take the
crypto processing out of band by pre-encrypting the data set and then
using Transportable Tablespaces (TTS) to load into the database. Try to
parallelize this procedure where possible. This requires the database
instance to copy the required TDE key to the keystore on the destination
database. The procedure may not be feasible when there is a fixed time
window for encryption and loading, and these must be done serially.

— Consider using TDE column encryption. Encrypt only the handful of
sensitive regulated columns instead of encrypting an entire tablespace.

Decrypting an entire data set at once (for example, while performing a full
table scan by reading directly from disk, with no reading from SGA):

Frequently Asked Questions About Transparent Data Encryption 7-5

https://support.oracle.com

Performance Questions About Transparent Data Encryption

Lower crypto performance is observed when running full table scan queries
where data is read directly from storage. Certain performance optimizations
of TDE tablespace encryption are bypassed (no caching). Hence, Transparent
Data Encryption has no bonus performance benefits in this type of operation.

Follow these guidelines:

— Ensure that the database is running on servers with CPU-based
cryptographic acceleration.

— Retest the full table scan queries with a larger SGA size to measure
performance when data is read from cache. Try setting the Oracle event
number 10949 to disable direct path read.

— Partition the database so that less data is scanned by full table scan
operations. Production databases often use partitioning for this kind of
scenario (that is, to limit the total amount of data scanned).

— Consider using TDE column encryption. Encrypt only the handful of
sensitive regulated columns instead of encrypting an entire tablespace.

7-6 Oracle Database Advanced Security Guide

Part Il

Using Oracle Data Redaction

Part II describes how to use Oracle Data Redaction.

Topics:

Introduction to Oracle Data Redaction (page 8-1)

Oracle Data Redaction Features and Capabilities (page 9-1)
Configuring Oracle Data Redaction Policies (page 10-1)

Using Oracle Data Redaction in Oracle Enterprise Manager (page 11-1)
Oracle Data Redaction Use with Oracle Database Features (page 12-1)

Security Considerations for Oracle Data Redaction (page 13-1)

8

Introduction to Oracle Data Redaction

Oracle Data Redaction is the ability to redact sensitive data in real time.

Topics:

What Is Oracle Data Redaction? (page 8-1)
When to Use Oracle Data Redaction (page 8-2)
Benefits of Using Oracle Data Redaction (page 8-2)

Target Use Cases for Oracle Data Redaction (page 8-2)

See Also:

® Oracle Database 2 Day + Security Guide for a tutorial about creating Oracle
Data Redaction policies

® Oracle Database Security Guide for information about using Transparent
Sensitive Data Protection policies with Oracle Data Redaction

8.1 What Is Oracle Data Redaction?

Oracle Data Redaction enables you to mask (redact) data that is returned from queries
issued by applications.

You can redact column data by using one of the following methods:

Full redaction. You redact all of the contents of the column data. The redacted
value returned to the querying application user depends on the data type of the
column. For example, columns of the NUMBER data type are redacted with a zero
(0), and character data types are redacted with a single space.

Partial redaction. You redact a portion of the column data. For example, you can
redact a Social Security number with asterisks (*), except for the last 4 digits.

Regular expressions. You can use regular expressions to look for patterns of data
to redact. For example, you can use regular expressions to redact email addresses,
which can have varying character lengths. It is designed for use with character
data only.

Random redaction. The redacted data presented to the querying application user
appears as randomly generated values each time it is displayed, depending on the
data type of the column.

No redaction. The None redaction type option enables you to test the internal
operation of your redaction policies, with no effect on the results of queries

Introduction to Oracle Data Redaction 8-1

When to Use Oracle Data Redaction

against tables with policies defined on them. You can use this option to test the
redaction policy definitions before applying them to a production environment.

Oracle Database applies the redaction at runtime, when users access the data (that is,
at query-execution time). This solution works well in a production system. During the
time that the data is being redacted, all of the data processing is performed normally,
and the back-end referential integrity constraints are preserved.

Data redaction can help you to comply with industry regulations such as Payment
Card Industry Data Security Standard (PCI DSS) and the Sarbanes-Oxley Act.

8.2 When to Use Oracle Data Redaction

Use Oracle Data Redaction when you must disguise sensitive data that your
applications and application users must access.

Data Redaction enables you to easily disguise the data using several different
redaction styles.

Oracle Data Redaction is ideal for situations in which you must redact specific
characters out of the result set of queries of Personally Identifiable Information (PII)
returned to certain application users. For example, you may want to present a U.S.
Social Security number that ends with the numbers 4320 as *** - ** - 4320.

Oracle Data Redaction is particularly suited for call center applications and other
applications that are read-only. Take care when using Oracle Data Redaction with
applications that perform updates back to the database, because redacted data can be
written back to this database.

8.3 Benefits of Using Oracle Data Redaction

Oracle Data Redaction provides several benefits when you use it to protect your data.

These benefits are as follows:

* You have different styles of redaction from which to choose.

e Because the data is redacted at runtime, Data Redaction is well suited to
environments in which data is constantly changing.

* You can create the Data Redaction policies in one central location and easily
manage them from there.

e The Data Redaction policies enable you to create a wide variety of function
conditions based on SYS CONTEXT values, which can be used at runtime to
decide when the Data Redaction policies will apply to the results of the
application user's query.

8.4 Target Use Cases for Oracle Data Redaction

Oracle Data Redaction fulfils common use case scenarios.
Topics:
® Oracle Data Redaction Use with Database Applications (page 8-3)

¢ QOracle Data Redaction with Ad Hoc Database Queries Considerations
(page 8-3)

8-2 Oracle Database Advanced Security Guide

Target Use Cases for Oracle Data Redaction

8.4.1 Oracle Data Redaction Use with Database Applications

Oracle Data Redaction protects sensitive data that is displayed in database
applications.

Data Redaction is transparent to application users because it preserves the original
data type and (optionally) the formatting. It is highly transparent to the database
because the data remains the same in buffers, caches, and storage—only being
changed at the last minute just before SQL query results are returned to the caller. The
redaction is enforced consistently across all of the applications that use the same
underlying database. You can specify which application users should see only
redacted data by checking application user information that is passed into the
database through the SYS_CONTEXT function; you can redact data based on attributes
of the current database or application user; and you can implement multiple logical
conditions within a given redaction policy. In addition, Data Redaction is
implemented in a way that minimizes performance overhead. These characteristics
make Oracle Data Redaction particularly well suited for usage by a range of
applications, analytics tools, reporting tools, and monitoring tools that share common
production databases. Although its primary target is redaction of production data for
applications, Oracle Data Redaction also can be used in combination with Oracle
Enterprise Manager Data Masking and Subsetting Pack for protecting sensitive data in
testing and development environments.

See Also:

® Oracle Data Masking and Subsetting Guide for more information about data
masking and subsetting

® Oracle Data Redaction and Data Masking and Subsetting Pack
(page 12-7)

8.4.2 Oracle Data Redaction with Ad Hoc Database Queries Considerations

You may encounter situations where it is convenient to redact sensitive data for ad hoc
queries that are performed by database users.

For example, in the course of supporting a production application, a user may need to
run ad hoc database queries to troubleshoot and fix an urgent problem with the

application. This is different from the application-based scenarios described in Oracle
Data Redaction Use with Database Applications (page 8-3), which typically generate a
bounded set of SQL queries, use defined database accounts, and have fixed privileges.

Even though Oracle Data Redaction is not designed to prevent data exposure to
database users who run ad hoc queries directly against the database, it can provide an
additional layer to reduce the chances of accidental data exposure. Because such users
may have rights to change data, alter the database schema, and circumvent the SQL
query interface entirely, it is possible for a malicious user to bypass Data Redaction
policies in certain circumstances.

Remember that the Oracle Database security tools are designed to be used together to
improve overall security. By deploying one or more of these tools as a complement to
Oracle Data Redaction, you can securely increase your overall security posture.

Introduction to Oracle Data Redaction 8-3

Target Use Cases for Oracle Data Redaction

See Also:

Oracle Data Redaction General Usage Guidelines (page 13-1) for additional
general usage guidelines

8-4 Oracle Database Advanced Security Guide

9

Oracle Data Redaction Features and
Capabilities

Oracle Data Redaction provides a variety of ways to redact different types of data.
Topics:

¢ Full Data Redaction to Redact All Data (page 9-1)

Partial Data Redaction to Redact Sections of Data (page 9-2)
¢ Regular Expressions to Redact Patterns of Data (page 9-3)
¢ Random Data Redaction to Generate Random Values (page 9-4)

e Comparison of Full, Partial, and Random Redaction Based on Data Types
(page 9-5)

¢ No Redaction for Testing Purposes (page 9-7)

9.1 Full Data Redaction to Redact All Data

Full data redaction redacts the entire contents of the specified table or view column.

By default the output is displayed as follows:
¢ Character data types: The output text is a single space.
e Number data types: The output text is a zero (0).

* Date-time data types: The output text is set to the first day of January, 2001,
which appears as 01- JAN- 01.

Full redaction is the default and is used whenever a Data Redaction policy specifies
the column but omits the f unct i on_t ype parameter setting. When you run the
DBMS_REDACT. ADD_PQLI CY procedure, to set the f unct i on_t ype parameter
setting for full redaction, you enter the following setting:

function_type => DBMS_REDACT. FULL

You can use the DBMS_REDACT. UPDATE_FULL_REDACTI ON_VALUES procedure to
change the full redaction output to different values.

See Also:
* Syntax for Creating a Full Redaction Policy (page 10-9)

* Altering the Default Full Data Redaction Value (page 10-11)

Oracle Data Redaction Features and Capabilities 9-1

Partial Data Redaction to Redact Sections of Data

9.2 Partial Data Redaction to Redact Sections of Data

In partial data redaction, you redact portions of the displayed output.

You can set the position within the actual data at which to begin the redaction, the
number of characters to redact starting from that position, and the redaction character
to use. This type of redaction is useful for situations where you want it to be obvious
to the person viewing the data that it was redacted in some way. Typically, you use
this type of redaction for credit cards or ID numbers.

Be aware that partial data redaction requires that your data width remain fixed. If you
want to redact columns containing string values of variable length, then you must use
regular expressions, as described in Regular Expressions to Redact Patterns of Data

(page 9-3).

To specify partial redaction, you must set the DBMS_REDACT. ADD_POLI CY procedure
function_t ype parameter to DBM5_REDACT. PARTI AL and use the
functi on_par anet er s parameter to define the partial redaction behavior.

The displayed output for partial data redaction can be as follows:

® Character data types: When partially redacted, a Social Security number
(represented as a hyphenated string within a character data type) with value
987- 65- 4320 could be redacted so that it is displayed as shown in the following
examples. The code on the right specifies how to redact the character data: it
specifies the expected input format of the actual data, the format to use for the
display of the redacted output, the start position at which to begin the redaction,
the character to use for the redaction, and how many characters to redact. The first
example uses a predefined format (in previous releases called a shortcut) for
character data type Social Security numbers, and the second example replaces the
first five numbers with an asterisk (*) while preserving the hyphens (-) in
between the numbers.

XXX- XX- 4320 function_paraneters => DBVS_REDACT. REDACT _US_SSN F5,
*Ek_xx_4320 function_paraneters => ' VWFWFWW, VW-W-WW, * 1, 5",

* Number data types: The partially redacted NUMBER data type Social Security
number 987654328 could appear as follows. Both redact the first five digits. The
first example uses a predefined format that is designed for Social Security
numbers in the NUMBER data type, and the second replaces the first five numbers
with the number 9, starting from the first digit.

XXXXX4328 function_paraneters => DBVS_REDACT. REDACT_NUM US_SSN F5,
999994328 function_paraneters => '9,1,5',

¢ Date-time data types: Partially redacted datetime values can appear simply as
different dates. For example, the date 29- AUG- 11 10. 20. 50. 000000 AMcould
appear as follows. In the first example, the day of the month is redacted to 02
(using the setting d02) and in the second example, the month is redacted to DEC
(using ML 2). The uppercase values show the actual month (M), year (Y), hour (H),
minute (M), and second (S).

02- AUG 11 10.20.50. 000000 AM function_paraneters => 'MO2YHVS ,

29-DEC- 11 10.20.50. 000000 AM function_paraneters => 'ml2DYHVS ,

9-2 Oracle Database Advanced Security Guide

Regular Expressions to Redact Patterns of Data

See Also:

* Syntax for Creating a Regular Expression-Based Redaction Policy
(page 10-21)

* Syntax for Creating a Partial Redaction Policy (page 10-13)

9.3 Regular Expressions to Redact Patterns of Data

You can use regular expressions to redact specific data within a column data value,
based on a pattern search.

For example, you can redact the user name of email addresses, so that only the domain
shows (for example, replacing hpr est on in the email address

hpr est on@xanpl e. comwith [r edact ed] so that it appears as

[redact ed] @xanpl e. com). To perform the redaction, set the

DBMS_REDACT. ADD_PQOLI CY procedure f unct i on_t ype parameter to
DBMS_REDACT. REGEXP, and then use the following parameters to build the regular
expression:

* A string search pattern (that is, the values to search for), such as:

regexp_pattern = ' (.H)@. H.[AZa-z]{2,4})"

This setting looks for a pattern of the following form:

one_or_nore_characters@ne_or_more_characters. 2-4_characters_in_range A-Z or_a-z

¢ A replacement string, which replaces the value matched by the r egexp_pattern
setting. The replacement string can include back references to sub-expressions of
the main regular expression pattern. The following example replaces the data
before the @symbol (from the r egexp_pat t er n setting) with the text
[redact ed] . The\ 2 setting refers to the second match group, whichis (. +\ .
[A-Za-z] {2, 4}) from theregexp_patt ern setting.

regexp_replace_string =>'[redacted] @2

e The starting position for the string search string, such as the first character of the
data, such as:

regexp_position => DBMS_REDACT. RE_BEG NNI NG

¢ The kind of search and replace operation to perform, such as the first occurrence,
every fifth occurrence, or all of the occurrences, such as:

I egexp_occurrence => DBMS_REDACT. RE_ALL

® The default matching behavior for the search and replace operation, such as
whether the search is case-sensitive (i sets it to be not case-sensitive):

regexp_mat ch_parameter =>'i

In addition to the default parameters, you can use a set of predefined formats that
enable you to use commonly used regular expressions for telephone numbers, email
addresses, and credit card numbers.

Oracle Data Redaction Features and Capabilities 9-3

Random Data Redaction to Generate Random Values

See Also:

Syntax for Creating a Regular Expression-Based Redaction Policy (page 10-21)

9.4 Random Data Redaction to Generate Random Values

In random data redaction, the entire value is redacted by replacing it with a random

value.

The redacted values displayed in the result set of the query change randomly each
time application users run the query.

This type of redaction is useful in cases where you do not want it to be obvious that
the data was redacted. It works especially well for number and datetime data types,
where it is difficult to distinguish between random and real data.

The displayed output for random values changes based on the data type of the
redacted column, as follows:

Character data types: The random output is a mixture of characters (for example,
HTU[G\ pj KEVEK). It behaves differently for the CHAR and VARCHAR? data
types, as follows:

CHAR data type: The redacted output is always in the same character set as
the character set of the column. The byte length of the redacted output is
always the same as the column definition length (that is, the column length
that was provided at the time of table creation). For example, if the column is
CHAR(20) , then a string of 20 random characters is provided in the redacted
output of the user's query.

VARCHAR?2 data type: For random redaction of a VARCHAR data type, the
redacted output is always in the same character set as the character set of the
column. The length of the redacted output is limited based on the length of
the actual data in the column. No characters in excess of the length of the
actual data are displayed. For example, if the column is VARCHAR2(20) and
the row being redacted contains actual data with a length of 12, then a string
of 12 random characters (not 20) is provided in the redacted output of the
user's query for that row.

Number data types: Each actual number value is redacted by replacing it with a
random, non-negative number modulo the absolute value of the actual data. This
redaction results in random numbers that do not exceed the precision of the actual
data. For example, the number 987654321 can be redacted by replacing it with
any of the numbers 12345678, 13579, 0, or 987654320, but not by replacing it
with any of the numbers 987654321, 99987654321, or - 1. The number - 123
could be redacted by replacing it with the numbers 122, 0, or 83, but not by
replacing it with any of the numbers 123, 1123, or - 2.

The only exception to the above is when the actual value is an integer between -1
and 9. In this case, the actual data is redacted by replacing it with a random, non-
negative integer modulo ten (10).

Date-time data types: When values of the date data type are redacted using
random Data Redaction, Oracle Database displays them with random dates that
are always different from those of the actual data.

The setting for using random redaction is as follows:

9-4 Oracle Database Advanced Security Guide

Comparison of Full, Partial, and Random Redaction Based on Data Types

function_type

=> DBMS_REDACT. RANDOM

See Also:

Syntax for Creating a Random Redaction Policy (page 10-28)

9.5 Comparison of Full, Partial, and Random Redaction Based on Data

Types

The full, partial, and random data redaction styles affect the Oracle built-in, ANSI,
user-defined, and Oracle supplied types in different ways.

Topics:

® Oracle Built-in Data Types Redaction Capabilities (page 9-5)

* ANSI Data Types Redaction Capabilities (page 9-6)

® User Defined Data Types or Oracle Supplied Types Redaction Capabilities

(page 9-7)

9.5.1 Oracle Built-in Data Types Redaction Capabilities

Oracle Data Redaction handles the Oracle built-in data types depending on the type of
Data Redaction policies are used.

Table 9-1 (page 9-5) compares how the full, partial, and random redaction styles
work for Oracle built-in data types.

Table 9-1 Redaction Capabilities for Oracle Built-in Data Types
- -]

Data Type

Full Redaction Partial Redaction Random Redaction

Character: CHAR, VARCHAR? (including
long VARCHARZ, for example,
VARCHARZ2(20000)), NCHAR,
NVARCHAR2

Number: NUMBER, FLOAT,
Bl NARY_FLOAT, Bl NARY_DOUBLE

Raw: LONG RAW RAW

Date-time: DATE, TI MESTAMP,

TI MESTAMP W TH Tl ME ZONE,
TI MESTAMP W TH LOCAL TI ME
ZONE

Interval: | NTERVAL YEAR TO MONTH,
I NTERVAL DAY TO SECOND

Large Object: BFI LE

Large Object: BLOB

Default redacted valueisa Supported data Supported data
single blank space type type

Default redacted value is Supported data Supported data
zero (0). type type

Not a supported data type =~ Not a supported Not a supported

data type data type

Default redacted value is Supported data Supported data
01-01-010r01-01-01 type type

01: 00: 00.

Not a supported data type

Not a supported

Not a supported

data type data type
Not a supported data type Not a supported Not a supported
data type data type
Oracle's raw representation Not a supported Not a supported
of [redact ed] data type data type

1

Oracle Data Redaction Features and Capabilities 9-5

Comparison of Full, Partial, and Random Redaction Based on Data Types

Table 9-1 (Cont.) Redaction Capabilities for Oracle Built-in Data Types

Data Type Full Redaction Partial Redaction Random Redaction
Large Object: CLOB, NCLOB Default redacted value is Not a supported ~ Not a supported
[redacted]. data type data type
Rowid: RON D, UROW D Not a supported data type = Nota supported Not a supported
data type data type

1 If you have changed the character set, then you may need to invoke the

DBMS_REDACT. UPDATE_FULL_REDACTI ON_VALUES procedure to set the value to the raw representation in the

new character set, as follows:

DECLARE

new red bl ob BLOB;
BEG N

DBMS_LOB. CREATETEMPORARY(new_r ed_bl ob, TRUE);

DBVS_LOB. Rl TE(new_red_bl ob, 10, 1, UTL_RAW CAST_TO RAW' [redacted]'));
dbns_redact. updat e_ful | _redacti on_val ues(

bl ob_val => new_red_bl ob);
DBMS_LOB. FREETEMPORARY(new_r ed_bl ob) ;
END;

/

After you run this procedure, restart the database.

See also Altering the Default Full Data Redaction Value (page 10-11) for more information about using the

DBMS_REDACT. UPDATE_FULL_REDACTI ON_VALUES procedure.

9.5.2 ANSI Data Types Redaction Capabilities

Oracle Data Redaction converts ANSI data types in specific ways, depending on the
type of redaction the Data Redaction policy has.

Table 9-2 (page 9-6) compares how the full, partial, and random redaction styles
work for ANSI data types.

Table 9-2 Redaction Capabilities for the ANSI Data Types

Data Type How Full Redaction Partial Redaction Random Redaction
Converted

CHARACTER(n) , Converted to Yes Yes Yes

CHAR(n) CHAR(n)

CHARACTER VARYI NG n), Converted to Yes Yes Yes

CHAR VARYI NG(n) VARCHARZ(n)

NATI ONAL CHARACTER(n), Converted to Yes Yes Yes

NATI ONAL CHAR(n), NCHAR(n)

NCHAR(n)

NATI ONAL CHARACTER Converted to Yes Yes Yes

VARYI NG(n), NVARCHAR2 (n

NATI ONAL CHAR)

VARY! NG n),

NCHAR VARYI NG(n)

9-6 Oracle Database Advanced Security Guide

No Redaction for Testing Purposes

Table 9-2 (Cont.) Redaction Capabilities for the ANSI Data Types

Data Type How Full Redaction Partial Redaction Random Redaction
Converted

NUMERI C[(p, s)] Converted to Yes Yes Yes

DECI MAL[(p, s)] NUMBER(p, s)

| NTEGER Converted to Yes Yes Yes

| NT NUNMBER(38)

SMALLI NT

FLOAT Converted to Yes Yes Yes

DOUBLE PRECI S| ON FLOAT(126)

REAL Converted to Yes Yes Yes
FLOAT(63)

GRAPHI C No conversion No No No

LONG VARGRAPHI C

VARGRAPHI C

TI ME

9.5.3 User Defined Data Types or Oracle Supplied Types Redaction Capabilities
Several data types or types are not supported by Oracle Data Redaction.

Table 9-3 (page 9-7) compares how the full, partial, and random redaction styles
work for user defined and Oracle supplied types.

Table 9-3 Redaction Capabilities for the User Defined Data Types or Oracle Supplied Types

Data Type or Type Full Redaction Partial Redaction Random Redaction

User-defined data types Not a supported data type =~ Not a supported ~ Not a supported
data type data type

Oracle supplied types: Any types, XML Not a supported data type = Not a supported Not a supported

types, Oracle Spatial types, Oracle data type data type

Media types

9.6 No Redaction for Testing Purposes

You can create a Data Redaction policy that does not perform redaction.

This is useful for cases in which you have a redacted base table, yet you want a
specific application user to have a view that always shows the actual data. You can
create a new view of the redacted table and then define a Data Redaction policy for
this view. The policy still exists on the base table, but no redaction is performed when
the application queries using the view as long as the DBM5_REDACT. NONE

functi on_t ype setting was used to create a policy on the view.

Oracle Data Redaction Features and Capabilities 9-7

No Redaction for Testing Purposes

9-8 Advanced Security Guide

10

Configuring Oracle Data Redaction Policies

An Oracle Data Redaction policy defines how to redact data in a column based on the
table column type and the type of redaction you want to use.

Topics:

About Oracle Data Redaction Policies (page 10-1)

Who Can Create Oracle Data Redaction Policies? (page 10-2)

Planning an Oracle Data Redaction Policy (page 10-3)

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure (page 10-3)
Using Expressions to Define Conditions for Data Redaction Policies (page 10-5)

Creating a Full Redaction Policy and Altering the Full Redaction Value
(page 10-8)

Creating a Partial Redaction Policy (page 10-13)

Creating a Regular Expression-Based Redaction Policy (page 10-20)
Creating a Random Redaction Policy (page 10-27)

Creating a Policy That Uses No Redaction (page 10-29)

Exemption of Users from Oracle Data Redaction Policies (page 10-30)
Altering an Oracle Data Redaction Policy (page 10-31)

Redacting Multiple Columns (page 10-36)

Altering the Default Full Data Redaction Value (page 10-11)
Disabling and Enabling an Oracle Data Redaction Policy (page 10-37)
Dropping an Oracle Data Redaction Policy (page 10-39)

Tutorial: SQL Expressions to Build Reports with Redacted Values (page 10-39)

Oracle Data Redaction Policy Data Dictionary Views (page 10-41)

10.1 About Oracle Data Redaction Policies

An Oracle Data Redaction policy defines the conditions in which redaction must occur
for a table or view.

A Data Redaction policy has the following characteristics:

Configuring Oracle Data Redaction Policies 10-1

Who Can Create Oracle Data Redaction Policies?

¢ The Data Redaction policy defines the following: What kind of redaction to
perform, how the redaction should occur, and when the redaction takes place.
Oracle Database performs the redaction at execution time, just before the data is
returned to the application.

* A Data Redaction policy can fully redact values, partially redact values, or
randomly redact values. In addition, you can define a Data Redaction policy to
not redact any data at all, for when you want to test your policies in a test
environment.

® A Data Redaction policy can be defined with a policy expression which allows for
different application users to be presented with either redacted data or actual
data, based on whether the policy expression returns TRUE or FALSE. Redaction
takes place when the boolean result of evaluating the policy expression is TRUE.
For security reasons, the functions and operators that can be used in the policy
expression are limited to SYS_CONTEXT and a few others. User-created functions
are not allowed. Policy expressions can make use of the SYS_SESSI ON_RCOLES
namespace with the SYS_CONTEXT function to check for enabled roles.

Table 10-1 (page 10-2) lists the procedures in the DBM5_REDACT package.

Table 10-1 DBMS_REDACT Procedures

Procedure Description
DBMS_REDACT. ADD_POLI CY Adds a Data Redaction policy to a table or view
DBM5_REDACT. ALTER_PQOLI CY Modifies a Data Redaction policy

DBMS_REDACT. UPDATE_FULL_RED Globally updates the full redaction value for a given
ACTI ON_VALUES data type. You must restart the database instance
before the updated values can be used.

DBMS_REDACT. ENABLE_POLI CY Enables a Data Redaction policy

DBMS_REDACT. DI SABLE_PQOLI CY Disables a Data Redaction policy

DBM5_REDACT. DROP_PQLI CY Drops a Data Redaction policy

See Also:

e Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBM5_REDACT PL/SQL package

* Using Oracle Data Redaction in Oracle Enterprise Manager
(page 11-1)for information about using Oracle Enterprise Manager
Cloud Control to create and manage Oracle Data Redaction policies and
formats

10.2 Who Can Create Oracle Data Redaction Policies?

Because data redaction involves the protection of highly sensitive data, only trusted
users should create Oracle Data Redaction policies.

10-2 Oracle Database Advanced Security Guide

Planning an Oracle Data Redaction Policy

To create redaction policies, you must have the EXECUTE privilege on the
DBMS_REDACT PL/SQL package. To find the privileges that a user has been granted,
you can query the DBA_SYS_PRI VS data dictionary view.

You do not need any privileges to access the underlying tables or views that will be
protected by the policy.

10.3 Planning an Oracle Data Redaction Policy

Before you create a Oracle Data Redaction policy, you should plan the data redaction
policy that best suits your site’s needs.

1. Ensure that you have been granted the EXECUTE privilege on the DBMS_REDACT
PL/SQL package.

2. Determine the data type of the table or view column that you want to redact.

3. Ensure that this column is not used in an Oracle Virtual Private Database (VPD)
row filtering condition. That is, it must not be part of the VPD predicate generated
by the VPD policy function.

4. Decide on the type of redaction that you want to perform: full, random, partial,
regular expressions, or none.

5. Decide which users to apply the Data Redaction policy to.

6. Based on this information, create the Data Redaction policy by using the
DBM5_REDACT. ADD_PCLI CY procedure.

7. Configure the policy to have additional columns to be redacted, as described in
Redacting Multiple Columns (page 10-36).

After you create the Data Redaction policy, it is automatically enabled and ready to
redact data.

10.4 General Syntax of the DBMS_REDACT.ADD_POLICY Procedure

To create a Data Redaction policy, you must use the DBMS_REDACT. ADD_POLI CY
procedure.

The complete syntax for the DBMS_REDACT. ADD_PCLI CY procedure is as follows:
DBMVS_REDACT. ADD_PCLI CY (

obj ect _schema IN VARCHAR2 : = NULL,
obj ect _nane IN VARCHAR2 : = NULL,
pol i cy_name I'N VARCHAR?,
policy_description IN VARCHAR2 : = NULL,
col um_nane IN VARCHAR2 : = NULL,
col um_description IN VARCHAR2 := NULL,
function_type I N Bl NARY_| NTEGER : = DBMS_REDACT. FULL,
function_paraneters IN VARCHAR2 := NULL,
expression I'N VARCHAR?,

enabl e I N BOOLEAN : = TRUE,
regexp_pattern IN VARCHAR2 : = NULL,
regexp_replace_string IN VARCHAR2 : = NULL,
regexp_position I'N BI NARY_| NTEGER : =1,
regexp_occurrence I'N BI NARY_| NTEGER : =0,
regexp_nat ch_par anet er N VARCHAR2 := NULL);

In this specification:

Configuring Oracle Data Redaction Policies 10-3

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure

e obj ect _schema: Specifies the schema of the object on which the Data Redaction
policy will be applied. If you omit this setting (or enter NULL), then Oracle
Database uses the current user's name. Be aware that the meaning of "current
user” here can change, depending on where you invoke the
DBM5_REDACT. ADD_PCLI CY procedure.

For example, suppose user npi ke grants user f br own the EXECUTE privilege on
a definer's rights PL/SQL package called npi ke. pr ot ect _dat a in npi ke's
schema. From within this package, npi ke has coded a procedure called

prot ect _cust _dat a, which invokes the DBMS_REDACT. ADD _POLI CY
procedure. User npi ke has set the obj ect _schemna parameter to NULL.

When f br own invokes the pr ot ect _cust _dat a procedure in the

npi ke. pr ot ect _dat a package, Oracle Database attempts to define the Data
Redaction policy around the object cust _dat a in the npi ke schema, not the
cust _dat a object in the schema that belongs to f br own.

e obj ect _name: Specifies the name of the table or view to which the Data
Redaction policy applies.

* policy_name: Specifies the name of the policy to be created. Ensure that this
name is unique in the database instance. You can find a list of existing Data
Redaction policies by querying the POLI CY_NAME column of the
REDACTI ON_PCLI CI ES data dictionary view.

e policy_description:Specifies a brief description of the purpose of the policy.

e col umm_narme: Specifies the column whose data you want to redact. Note the
following:

— You can apply the Data Redaction policy to multiple columns. If you want
to apply the Data Redaction policy to multiple columns, then after you use
DBMS_REDACT. ADD_PCLI CY to create the policy, run the
DBMS_REDACT. ALTER_PCLI CY procedure as many times as necessary to
add each of the remaining required columns to the policy. See Altering an
Oracle Data Redaction Policy (page 10-31).

— Only one policy can be defined on a table or view. You can, however, create
a new view on the table, and by defining a second redaction policy on this
new view, you can choose to redact the columns in a different way when a
query is issued against this new view. When deciding how to redact a given
column, Oracle Database uses the policy of the earliest view in a view chain.

— If you do not specify a column (for example, by entering NULL), then no
columns are redacted by the policy. This enables you to create your policies
so that they are in place, and then later on, you can add the column
specification when you are ready.

— Do not use a column that is currently used in an Oracle Virtual Private
Database (VPD) row filtering condition. In other words, the column should
not be part of the VPD predicate generated by the VPD policy function. (See
Oracle Data Redaction and Oracle Virtual Private Database (page 12-3) for
more information about using Data Redaction with VPD.)

— You cannot define a Data Redaction policy on a virtual column. In addition,
you cannot define a Data Redaction policy on a column that is involved in the
SQL expression of any virtual column.

10-4 Oracle Database Advanced Security Guide

Using Expressions to Define Conditions for Data Redaction Policies

col um_descr i pt i on: Specifies a brief description of the column that you are
redacting.

functi on_t ype: Specifies a function that sets the type of redaction. See the
following sections for more information:

— Syntax for Creating a Full Redaction Policy (page 10-9)
— Syntax for Creating a Partial Redaction Policy (page 10-13)

— Syntax for Creating a Regular Expression-Based Redaction Policy
(page 10-21)

- Syntax for Creating a Random Redaction Policy (page 10-28)

— Syntax for Creating a Policy with No Redaction (page 10-29)

If you omit the f unct i on_t ype parameter, then the default redaction
functi on_t ype setting is DBMS_REDACT. FULL.

functi on_par anet er s: Specifies how the column redaction should appear for
partial redaction. See Syntax for Creating a Partial Redaction Policy (page 10-13).

expr essi on: Specifies a Boolean SQL expression to determine how the policy is
applied. Redaction takes place only if this policy expression evaluates to TRUE.
See Using Expressions to Define Conditions for Data Redaction Policies

(page 10-5).

enabl e: When set to TRUE, enables the policy upon creation. When set to FALSE,
it creates the policy as a disabled policy. The default is TRUE. After you create the
policy, you can disable or enable it. See the following sections:

— Disabling an Oracle Data Redaction Policy (page 10-37)
— Enabling an Oracle Data Redaction Policy (page 10-38)

regexp_pattern,regexp_replace_string,regexp_position,
regexp_posi tion, regexp_occurrence,regexp_nat ch_paraneter:
Enable you to use regular expressions to redact data, either fully or partially. If the
regexp_patt er n does not match anything in the actual data, then full redaction
will take place, so be careful when specifying the r egexp_pat t er n. Ensure that
all of the values in the column conform to the semantics of the regular expression
you are using. See Syntax for Creating a Regular Expression-Based Redaction
Policy (page 10-21) for more information.

10.5 Using Expressions to Define Conditions for Data Redaction Policies
The expr essi on parameter in the DBMS_REDACT. ADD_PCLI CY procedure specifies
the conditions to which the policy applies.

Topics:

About Using Expressions in Data Redaction Policies (page 10-6)
Applying the Redaction Policy Based on User Environment (page 10-6)
Applying the Redaction Policy Based on Database Roles (page 10-7)

Applying the Redaction Policy Based on Oracle Label Security Label Dominance
(page 10-7)

Configuring Oracle Data Redaction Policies 10-5

Using Expressions to Define Conditions for Data Redaction Policies

¢ Applying the Redaction Policy Based on Application Express Session States
(page 10-7)

* Applying the Redaction Policy to All Users (page 10-8)

10.5.1 About Using Expressions in Data Redaction Policies

The DBMS_REDACT. ADD_POLI CY and DBM5S_REDACT. ALTER _POLI CY expr essi on
parameter defines a Boolean expression that must evaluate to TRUE to enable a
redaction.

This expression must be based on one of the following functions:

* SYS_CONTEXT, using a specified namespace. The default namespace for
SYS_CONTEXT is USERENV, which includes values such as SESSI ON_USER and
CLI ENT_I DENTI FI ER (See Oracle Database SQL Language Reference for detailed
information about this function.) Another namespace that you can use is the
SYS_SESSI ON_ROLES namespace, which contains attributes for each role.

e The following Oracle Application Express functions:
-V, which is a wrapper for the APEX_UTI L. GET_SESSI ON_STATE function

— NV, which is a wrapper for the
APEX_UTI L. GET_NUMERI C_SESSI ON_STATE function

See Oracle Application Express API Reference for more information about these
APEX_UTI L package functions.

e The OLS_LABEL_DOM NATES function, described in Oracle Label Security
Administrator’s Guide, which is a wrapper for the
LBACSYS. OLS_LABEL_DOM NATES function.

Follow these guidelines when you write the expression:
* Use only the following operators: =, ! =, >, <, >=, <=

® Because the expression must evaluate to TRUE for redaction, be careful when
making comparisons with NULL. Remember that in SQL the value NULL is
undefined, so comparisons with NULL tend to return FALSE.

¢ Do not use user-created functions in the expr essi on parameter; this is not
permitted.

Remember that for user SYS and users who have the EXEMPT REDACTI ON PQOLI CY
privilege, all of the Data Redaction policies are bypassed, so the results of their queries
are not redacted. See the following sections for more information about users who are
exempted from Data Redaction policies:

* Exemption of Users from Oracle Data Redaction Policies (page 10-30)

® Oracle Data Pump Security Model for Oracle Data Redaction (page 12-4)

10.5.2 Applying the Redaction Policy Based on User Environment

You can apply a Data Redaction policy based on the user’s environment, such as the
session user name or a client identifier.

10-6 Oracle Database Advanced Security Guide

Using Expressions to Define Conditions for Data Redaction Policies

® Use the USERENV namespace of the SYS_CONTEXT function in the
DBMS_REDACT. ADD_PCLI CY expr essi on parameter to apply the policy based
on a user’s environment.

For example, to apply the policy only to the session user name psni t h:

expression =>'SYS CONTEXT('' USERENV'',''SESSION USER ') = ''PSMTH "'

See Also:

Oracle Database SQL Language Reference for information about more
namespaces that you can use with the SYS_CONTEXT function

10.5.3 Applying the Redaction Policy Based on Database Roles

You can apply a Data Redaction policy based on a database role, such as the DBA role.

¢ Use the SYS_SESSI ON_RCOLES namespace in the SYS_CONTEXT function to apply
the policy based on a user role.

This namespace contains attributes for each role. The value of the attribute is
TRUE if the specified role is enabled for the querying application user; the value is
FALSE if the role is not enabled.

For example, suppose you wanted only supervisors to be allowed to see the actual
data. The following example shows how to use the DBM5_REDACT. ADD_PCLI CY
expr essi on parameter to set the policy to show the actual data to any application
user who has the super vi sor role enabled, but redact the data for all of the other
application users.

expression =>"'SYS_CONTEXT(''SYS_SESSION ROLES ','"'SUPERVISOR ') = ''FALSE "'

10.5.4 Applying the Redaction Policy Based on Oracle Label Security Label Dominance

You can set a condition on which to apply a Data Redaction policy based on the
dominance of Oracle Label Security labels.

Note:

This feature is available starting with Oracle Database 12c Release 1 (12.1.0.2).

* Use the public standalone function OLS_LABEL_DOM NATES to check the
dominance of a session label. This function returns 1 (TRUE) if the session label of
the specified pol i cy_name value dominates or is equal to the label that is
specified by the | abel parameter; otherwise, it returns 0 (FALSE).

For example, to apply a Data Redaction policy only in cases where the session label for
the policy hr _ol s_pol does not dominate nor is equal to label hs:

expression =>"'OLS_LABEL_DOM NATES (''hr_ols_pol'',""hs'"') =0

10.5.5 Applying the Redaction Policy Based on Application Express Session States

You can apply a Data Redaction policy based on an Oracle Application Express
(APEX) session state.

Configuring Oracle Data Redaction Policies 10-7

Creating a Full Redaction Policy and Altering the Full Redaction Value

¢ Use either of the following public Application Express APIs in the
DBM5_REDACT. ADD_PCLI CY expr essi on parameter to apply the policy on an
Oracle Application Express session state:

— V, which is a synonym for the APEX_UTI L. GET_SESSI ON_STATE function

— NV, which is a synonym for the
APEX_UTI L. GET_NUMERI C_SESSI ON_STATE function

For example, to set the DBMS_REDACT. ADD_PCLI CY expr essi on parameter if you
wanted redaction to take place when the application item called G_JOB has the value
CLERK:

expression => "V(''APP_USER ') != "' mavi s@xanple.com' or V(''APP_USER ') is null’

You can, for example, use these functions to redact data based on a job or a privilege
role that is stored in a session state in an APEX application.

If you want redaction to take place when the querying user is not within the context of
an APEX application (when the query is issued from outside the APEX framework, for
example directly through SQL*Plus), then use an | S NULL clause as follows. This
policy expression causes actual data to be shown to user mavi s only when her query
comes from within an APEX application. Otherwise, the query result is redacted.

See Also:

Oracle Application Express API Reference

10.5.6 Applying the Redaction Policy to All Users

You can apply the policy irrespective of the context to any user, with no filtering.

However, be aware that user SYS and users who have the EXEMPT REDACTI ON
PCOLI CY privilege are always except from Oracle Data Redaction policies.

* To apply the policy to users who are not SYS or have been granted the EXEMPT
REDACTI ON PCLI CY privilege, write the DBMS_REDACT. ADD_PCLI CY
expr essi on parameter to evaluate to TRUE.

For example:

expression =>'1=1'

See Also:

Exemption of Users from Oracle Data Redaction Policies (page 10-30)

10.6 Creating a Full Redaction Policy and Altering the Full Redaction

Value

You can create a full redaction policy to redact all contents in a data column, and
optionally, you can alter the default full redaction value.

Topics:

e Creating a Full Redaction Policy (page 10-9)

10-8 Oracle Database Advanced Security Guide

Creating a Full Redaction Policy and Altering the Full Redaction Value

* Altering the Default Full Data Redaction Value (page 10-11)

10.6.1 Creating a Full Redaction Policy
A full data redaction policy redacts all the contents of a data column.
Topics:
® About Creating Full Data Redaction Policies (page 10-9)
¢ Syntax for Creating a Full Redaction Policy (page 10-9)
e Example: Full Redaction Policy (page 10-10)
e Example: Fully Redacted Character Values (page 10-10)
10.6.1.1 About Creating Full Data Redaction Policies

To set a redaction policy to redact all data in the column, you must set the
function_t ype parameter to DBM5_REDACT. FULL.

By default, NUMBER data type columns are replaced with zero (0) and character data
type columns are replaced with a single space (). You can modify this default by
using the DBMS_REDACT. UPDATE_FULL_REDACTI ON_VALUES procedure.

See Also:

Altering the Default Full Data Redaction Value (page 10-11) if you want to
modify the default full redaction value

10.6.1.2 Syntax for Creating a Full Redaction Policy

The DBMS_REDACT. ADD_POLI CY procedure enables you to create a full redaction
policy.

The DBMS_REDACT. ADD_PQLI CY fields for creating a full data redaction policy are as
follows:

DBMVS_REDACT. ADD_PCLI CY (

obj ect _schema I N VARCHAR? := NULL,

obj ect _nane I N VARCHAR?,

col um_nane I'N VARCHAR2 := NULL,

pol i cy_nane I'N VARCHAR?,

function_type I'N BI NARY_I NTEGER : = NULL,
expressi on I N VARCHAR?,

enabl e I N BOOLEAN : = TRUE);

In this specification:

e object _schenm,obj ect _nane,col utm_nane, pol i cy_nane, expr essi on,
enabl e: See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
(page 10-3).

e function_type: Specifies the function used to set the type of redaction. Enter
DBMS_REDACT. FULL.

If you omit the f unct i on_t ype parameter, then the default redaction
functi on_t ype setting is DBMS_REDACT. FULL.

Configuring Oracle Data Redaction Policies 10-9

Creating a Full Redaction Policy and Altering the Full Redaction Value

Remember that the data type of the column determines which f uncti on_t ype
settings that you are permitted to use. See Comparison of Full, Partial, and
Random Redaction Based on Data Types (page 9-5).

10.6.1.3 Example: Full Redaction Policy

You can use the DBMS_REDACT. ADD_POLI CY PL/SQL procedure to create a full
redaction policy.

Example 10-1 (page 10-10) shows how to use full redaction for all the values in the

HR. EMPLOYEES table COMM SSI ON_PCT column. The expression parameter applies
the policy to any user querying the table, except for users who have been granted the
EXEMPT REDACTI ON PCLI CY system privilege. (See Exemption of Users from Oracle
Data Redaction Policies (page 10-30) for more information about the EXEMPT

REDACTI ON PQLI CY system privilege.)

Example 10-1 Full Data Redaction Policy

BEG N
DBMS_REDACT. ADD_PCLI CY(

obj ect _schema = "hr',
obj ect _nane => 'enpl oyees',
col urm_nane => 'commi ssion_pct',
policy_name => 'redact _compct',
function_type => DBM5_REDACT. FULL,
expression = '1=1");

END;

/

Query and redacted result:

SELECT COWM SSI ON_PCT FROM HR. EMPLOYEES;

10.6.1.4 Example: Fully Redacted Character Values

You can use the DBMS_REDACT. ADD_POLI CY PL/SQL procedure to create a policy
that fully redacts character values.

Example 10-2 (page 10-10) shows how to redact fully the user IDs of the user _i d
column in the mavi s. cust _i nf o table. The user _i d column is of the VARCHAR2
data type. The output is a blank string. The expr essi on setting enables users who
have the MCRrole to view the user IDs.

Example 10-2 Fully Redacted Character Values

BEG N
DBVS_REDACT. ADD_POLI CY(
object _schema =>"nmavis',

obj ect _name => 'cust_info',

col utm_nane => 'user_id",

policy_name => 'redact _cust_user _ids',

function_type => DBMS_REDACT. FULL,

expression => ' SYS_CONTEXT('' SYS_SESSION ROLES'',""MR ") = "'FALSE '');
END;

/

10-10 Oracle Database Advanced Security Guide

Creating a Full Redaction Policy and Altering the Full Redaction Value

Query and redacted result:

SELECT user_id FROM mavi s. cust _i nfo;

10.6.2 Altering the Default Full Data Redaction Value

You can use the DBMS_REDACT. UPDATE_FULL_REDACTI ON_VALUES procedure to
alter the default full data redaction value.

Topics:

* About Altering the Default Full Data Redaction Value (page 10-11)

¢ Syntax for the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES
Procedure (page 10-11)

* Modifying the Default Full Data Redaction Value (page 10-12)

10.6.2.1 About Altering the Default Full Data Redaction Value

You can alter the default displayed values for full Data Redaction polices.

By default, O is the redacted value when Oracle Database performs full redaction
(DBVM5_REDACT. FULL) on a column of the NUMBER data type. If you want to change it
to another value (for example, 7), then you can run the

DBMS_REDACT. UPDATE_FULL_REDACTI ON_VALUES procedure to modify this value.
The modification applies to all of the Data Redaction policies in the current database
instance. After you modify a value, you must restart the database for it to take effect.

You can find the current values by querying the

REDACTI ON_VALUES_FOR TYPE_FULL data dictionary view.

Be aware that this change affects all Data Redaction policies in the database that use
full data redaction. Before you alter the default full data redaction value, examine the
affect that this change would have on existing full Data Redaction policies.

10.6.2.2 Syntax for the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES

Procedure

The DBMS_REDACT. UPDATE_FULL_REDACTI ON_VALUES procedure accommodates
the standard supported Oracle Database data types.

The syntax is as follows:

DBVB_REDACT. UPDATE_FULL_REDACTI ON VALUES (

nunber _val I' N NUMBER NULL,
bi nfl oat _val I'N Bl NARY_FLOAT NULL,
bi ndoubl e_val I'N Bl NARY_DOUBLE NULL,
char _val IN CHAR NULL,
var char _val I N VARCHAR2 NULL,
nchar _val I N NCHAR NULL,
nvar char _val I' N NVARCHAR2 NULL,
date_val I N DATE NULL,
ts_val I'N TI MESTAMP NULL,
tswz_val IN TI MESTAMP WTH TI ME ZONE NULL,
bl ob_val IN BLOB NULL,

Configuring Oracle Data Redaction Policies 10-11

Creating a Full Redaction Policy and Altering the Full Redaction Value

cl ob_val IN CLOB NULL,
ncl ob_val I'N NCLOB NULL) ;

In this specification:
e nunber _val modifies the default value for columns of the NUMBER data type.

e binfloat_ val modifies the default value for columns of the Bl NARY_FLOAT
data type.

e bi ndoubl e_val modifies the default value for columns of the Bl NARY _DOUBLE
data type.

e char_val modifies the default value for columns of the CHAR data type.
e varchar_val modifies the default value for columns of the VARCHARZ data type.
e nchar_val modifies the default value for columns of the NCHAR data type.

e nvar char _val modifies the default value for columns of the N\VARCHARZ2 data

type.
e dat e_val modifies the default value for columns of the DATE data type.

e ts_val modifies the default value for columns of the TI MESTAMP data type.

e tswtz val modifies the default value for columns of the TI MESTAMP W TH
TI ME ZONE data type.

* bl ob_val modifies the default value for columns of the BLOB data type.
e cl ob_val modifies the default value for columns of the CLOB data type.
¢ ncl ob modifies the default value for columns of the NCLOB data type.

10.6.2.3 Modifying the Default Full Data Redaction Value

To modify the default full data redaction value, use the
DBMS_REDACT. UPDATE_FULL_REDACTI ON_VALUES procedure.

1. Login to the database instance as user SYS with the SYSDBA administrative
privilege.
2. Check the value that you want to change.

For example, to check the current value for columns that use the NUVBER data
type:

SELECT NUMBER VALUE FROM REDACTI ON_VALUES_FOR TYPE_FULL;

NUMBER_VALUE

3. Run the DBMS_REDACT. UPDATE_FULL_REDACTI ON_VALUES procedure to
modify the value.

For example:

EXEC DBMS_REDACT. UPDATE_FULL_REDACTI ON_VALUES (nunber val => 7);

4. Restart the database instance.

10-12 Oracle Database Advanced Security Guide

Creating a Partial Redaction Policy

For example:

SHUTDOMN | MVEDI ATE

STARTUP

10.7 Creating a Partial Redaction Policy

In partial data redaction, you can redact portions of data, and for different kinds of
data types.

Topics:

* About Creating Partial Redaction Policies (page 10-13)

* Syntax for Creating a Partial Redaction Policy (page 10-13)

* Creating Partial Redaction Policies Using Fixed Character Formats (page 10-14)
® Creating Partial Redaction Policies Using Character Data Types (page 10-16)

* Creating Partial Redaction Policies Using Number Data Types (page 10-18)

* Creating Partial Redaction Policies Using Date-Time Data Types (page 10-19)

10.7.1 About Creating Partial Redaction Policies

In partial data redaction, only a portion of the data, such as the first five digits of an
identification number, are redacted.

For example, you can redact most of a credit card number with asterisks (*), except for
the last 4 digits. You can create policies for columns that use character, number, or
date-time data types. For policies that redact character data types, you can use fixed
character redaction formats. If you have the Enterprise Manager for Oracle Database
12.1.0.7 plug-in deployed on your system, then you can also create and save custom
redaction formats.

Note:

In previous releases, the term shortcut was used for the term format.

10.7.2 Syntax for Creating a Partial Redaction Policy

The DBVS_REDACT. ADD_PQLI CY statement enables you to create policies that redact
specific parts of the data returned to the application.

The DBMS_REDACT. ADD_PQLI CY fields for creating a partial redaction policy are as
follows:

DBMS_REDACT. ADD_POLI CY (

obj ect _schema IN VARCHAR2 := NULL,

obj ect _nane I'N VARCHAR?,

col urm_nane I'N VARCHAR? := NULL,

pol i cy_nane I'N VARCHAR?,

function_type I'N BI NARY_| NTEGER : = NULL,
function_paraneters IN VARCHAR2 := NULL,
expressi on I'N VARCHAR?,

enabl e I N BOOLEAN : = TRUE);

Configuring Oracle Data Redaction Policies 10-13

Creating a Partial Redaction Policy

In this specification:

e o0bj ect_schemm, obj ect _nane, col utm_nane, pol i cy_nane, expr essi on,
enabl e: See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
(page 10-3)

e function_type: Specifies the function used to set the type of redaction. Enter
DBMS_REDACT. PARTI AL.

e function_par amet er s: The parameters that you set here depend on the data
type of the column specified for the col unm_nane parameter. See the following
sections for details:

— Creating Partial Redaction Policies Using Fixed Character Formats
(page 10-14)

— Creating Partial Redaction Policies Using Character Data Types (page 10-16)
— Creating Partial Redaction Policies Using Number Data Types (page 10-18)

— Creating Partial Redaction Policies Using Date-Time Data Types (page 10-19)

10.7.3 Creating Partial Redaction Policies Using Fixed Character Formats

The DBMS_REDACT. ADD_PCLI CY f unct i on_par anet er s parameter enables you to
use fixed character formats.

Topics:
¢ Settings for Fixed Character Formats (page 10-14)

e Example: Partial Redaction Policy Using a Fixed Character Format (page 10-15)

10.7.3.1 Settings for Fixed Character Formats

Oracle Data Redaction provides special predefined formats to configure policies that
use fixed characters.

Table 10-2 (page 10-14) describes DBM5_REDACT. ADD_POLI CY

functi on_par anet er s parameter formats that you can use for commonly redacted
Social Security numbers, postal codes, and credit cards that use either the VARCHAR2
or NUMBER data types for their columns.

Table 10-2 Partial Fixed Character Redaction Formats

Format Description

DBMS_REDACT. REDACT_US_SSN_F5 Redacts the first 5 numbers of Social Security
numbers when the column is a VARCHAR2 data
type. For example, the number 987- 65- 4320
becomes XXX- XX- 4320.

DBMS_REDACT. REDACT_US_SSN L4 Redacts the last 4 numbers of Social Security
numbers when the column is a VARCHAR2 data
type. For example, the number 987- 65- 4320
becomes 987- 65- XXXX.

10-14 Oracle Database Advanced Security Guide

Creating a Partial Redaction Policy

Table 10-2 (Cont.) Partial Fixed Character Redaction Formats
___|

Format Description

DBMS_REDACT. REDACT_US_SSN _ENTI RE Redacts the entire Social Security number
when the column is a VARCHARZ data type. For
example, the number 987- 65- 4320 becomes
XXX= XK= XXXX.

DBM5_REDACT. REDACT_NUM US_SSN_F5 Redacts the first 5 numbers of Social Security
numbers when the column is a NUMBER data
type. For example, the number 987654320
becomes XXXXX4320.

DBM5_REDACT. REDACT_NUM US_SSN L4 Redacts the last 4 numbers of Social Security
numbers when the column is a NUMBER data
type. For example, the number 987654320
becomes 98765XXXX.

DBMS_REDACT. REDACT_NUM US_SSN_EN Redacts the entire Social Security number

TI RE when the column is a NUMBER data type. For
example, the number 987654320 becomes
XXKXXKKXKX.

DBMS_REDACT. REDACT_ZI P_CODE Redacts a 5-digit postal code when the column
is a VARCHAR2 data type. For example, 95476
becomes XXXXX.

DBMS_REDACT. REDACT_NUM ZI P_CCDE Redacts a 5-digit postal code when the column
is a NUMBER data type. For example, 95476

becomes XXXXX.
DBVS_REDACT. REDACT_DATE_M LLENN Redacts dates that are in the DD- MON- YY
UM format to 01- JAN- 00 (January 1, 2000).
DBMS_REDACT. REDACT_DATE_EPOCH Redacts all dates to 01- JAN- 70.
DBMS_REDACT. REDACT_CCN16_F12 Redacts a 16-digit credit card number, leaving

the last 4 digits displayed. For example, 5105
1051 0510 5100 becomes **** - ****.
****-5100.

See Also:

"General Syntax of the DBMS_REDACT.ADD_POLICY Procedure (page 10-3)"
for information about other DBM5S_REDACT. ADD_POLI CY parameters

10.7.3.2 Example: Partial Redaction Policy Using a Fixed Character Format

You can use the DBMS_REDACT. ADD_POLI CY PL/SQL procedure to create a partial
redaction policy that uses a fixed character format.

Example 10-3 (page 10-15) shows how Social Security numbers in a VARCHAR2 data
type column and can be redacted using the REDACT_US_SSN_F5 format.

Example 10-3 Partially Redacted Character Values

BEG N
DBMS_REDACT. ADD_POLI CY(

Configuring Oracle Data Redaction Policies 10-15

Creating a Partial Redaction Policy

obj ect _schema = 'mvis',

obj ect _nane => 'cust_info',

col urm_nane => 'ssn',

pol i cy_nane => 'redact _cust_ssns3',
function_type => DBMS_REDACT. PARTI AL,
function_paraneters => DBVS_REDACT. REDACT_US_SSN F5,
expressi on = '1=1",

policy_description =>'Partially redacts 1st 5 digits in SS nunbers',
colum_description => 'ssn contains Social Security numbers');

END,

/

Query and redacted result:

SELECT ssn FROM mavi s. cust _i nfo;

XXX- XX- 4320
XXX- XX- 4323
XXX- XX- 4325
XXX- XX- 4329

10.7.4 Creating Partial Redaction Policies Using Character Data Types

The DBMS_REDACT. ADD_POLI CY f unct i on_par anet er s parameter enables you to
redact character data types.

Topics:
e Settings for Character Data Types (page 10-16)

¢ Example: Partial Redaction Policy Using a Character Data Type (page 10-17)

10.7.4.1 Settings for Character Data Types

Oracle Data Redaction provides special settings to configure policies that use character
data types.

When you set the DBM5_REDACT. ADD_POLI CY f uncti on_par anet er s parameter
to define partial redaction of character data types, enter values for the following
settings in the order shown. Separate each value with a comma

Note:

Be aware that you must use a fixed width character set for the partial
redaction. In other words, each character redacted must be replaced by
another of equal byte length. If you want to use a variable-length character set
(for example, UTF-8), then you must use a regular expression-based redaction.
See Syntax for Creating a Regular Expression-Based Redaction Policy

(page 10-21) for more information.

The settings are as follows:

1. Input format: Defines how the data is currently formatted. Enter V for each
character that potentially can be redacted, such as all of the digits in a credit card
number. Enter F for each character that you want to format using a formatting
character, such as hyphens or blank spaces in the credit card number. Ensure that

10-16 Oracle Database Advanced Security Guide

Creating a Partial Redaction Policy

each character has a corresponding V or F value. (The input format values are not
case-sensitive.)

2. Output format: Defines how the displayed data should be formatted. Enter V for
each character to be potentially redacted. Replace each F character in the input
format with the character that you want to use for the displayed output, such as a
hyphen. (The output format values are not case-sensitive.)

3. Mask character: Specifies the character to be used for the redaction. Enter a single
character to use for the redaction, such as an asterisk (*).

4. Starting digit position: Specifies the starting V digit position for the redaction.

5. Ending digit position: Specifies the ending V digit position for the redaction. Do
not include the F positions when you decide on the ending position value.

For example, the following setting redacts the first 12 V digits of the credit card
number 5105 1051 0510 5100, and replaces the F positions (which are blank
spaces) with hyphens to format it in a style normally used for credit card numbers,
resulting in **** - **** _*xxx_ 4390,

function_paraneters =>"WWFWWFWWRWW, WW- WW-WW-WW, * 1, 12",

See Also:

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure (page 10-3)
for information about other DBM5S_REDACT. ADD_POLI CY parameters

10.7.4.2 Example: Partial Redaction Policy Using a Character Data Type

The DBMS_REDACT. ADD_PCLI CY PL/SQL procedure can create a partial redaction
policy that uses a character data type.

Example 10-4 (page 10-17) shows how to redact Social Security numbers that are in a
VARCHAR? data type column and to preserve the character hyphens in the Social
Security number.

Example 10-4 Partially Redacted Character Values

BEG N
DBMS_REDACT. ADD_PCLI CY(

obj ect _schema = 'mvis',
obj ect _nane => 'cust_info',
col urm_nane => 'ssn',
pol i cy_nane => 'redact _cust_ssns2',
function_type => DBMS_REDACT. PARTI AL,
function_paraneters => ' VWFWFWW, VW- W-WW, * 1, 5",
expressi on = '1=1",

policy_description =>'Partially redacts Social Security nunbers',
colum_description =>'ssn contains character Social Security nunbers');
END,
/
Query and redacted result:

SELECT ssn FROM mavi s. cust _i nfo;

*xk_*x_ 1390

Configuring Oracle Data Redaction Policies 10-17

Creating a Partial Redaction Policy

* ok k _ **_4323
* ok k _ **_4325
* ok k _ **_4329
10.7.5 Creating Partial Redaction Policies Using Number Data Types

The DBMS_REDACT. ADD_POLI CY f unct i on_par anet er s parameter enables you to
redact number data types.

Topics:
® Settings for Number Data Types (page 10-18)

e Example: Partial Redaction Policy Using a Number Data Type (page 10-18)

10.7.5.1 Settings for Number Data Types

When you set values for the number data type, you must specify a mask character, a
starting digit position, and ending digit position.

For partial redaction of number data types, you can enter values for the following
settings for the f unct i on_par anmet er s parameter of the
DBM5_REDACT. ADD_PCLI CY procedure, in the order shown.

1. Mask character: Specifies the character to display. Enter a number from 0 to 9.

2. Starting digit position: Specifies the starting digit position for the redaction, such
as 1 for the first digit.

3. Ending digit position: Specifies the ending digit position for the redaction.

For example, the following setting redacts the first five digits of the Social Security
number 987654321, resulting in 999994321.

function_paraneters =>"'9,15",

See Also:

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure (page 10-3)
for information about other DBMS_REDACT. ADD_POLI CY parameters

10.7.5.2 Example: Partial Redaction Policy Using a Number Data Type

The DBMS_REDACT. ADD_PQOLI CY procedure can create a partial redaction policy that
uses a number data type.

Example 10-5 (page 10-18) shows how to partially redact a set of Social Security
numbers in the mavi s. cust _i nf o table, for any application user who logs in.
(Hence, the expr essi on parameter evaluates to TRUE.)

This type of redaction is useful when the application is expecting a formatted number
and not a string. In this scenario, the Social Security numbers are in a column of the
data type NUMBER. In other words, the ssn column contains numbers only, not other
characters such as hyphens or blank spaces.

Example 10-5 Partially Redacted Data Redaction Numeric Values

BEG N
DBMS_REDACT. ADD_PQOLI CY(
obj ect _schema = 'mvis',
obj ect _nane => 'cust_info',

10-18 Oracle Database Advanced Security Guide

Creating a Partial Redaction Policy

col urm_nane => 'ssn',

pol i cy_nane => 'redact _cust_ssnsl',
function_type => DBMS_REDACT. PARTI AL,
function_paraneters => '7,1,5",

expressi on = '1=1",

policy_description =>'Partially redacts Social Security nunbers',
colum_description => 'ssn contains nuneric Social Security numbers');
END,
/
Query and redacted result:

SELECT ssn FROM mavi s. cust _i nfo;

777774320
777774323
777774325
777774329

10.7.6 Creating Partial Redaction Policies Using Date-Time Data Types

The DBMS_REDACT. ADD_POLI CY f unct i on_par anet er s parameter enables you to
redact date-time data types.

Topics:
e Settings for Date-Time Data Types (page 10-19)

e Example: Partial Redaction Policy Using Date-Time Data Type (page 10-20)

10.7.6.1 Settings for Date-Time Data Types
Oracle Data Redaction provides special settings for configuring date-time data types.

For partial redaction of date-time data types, enter values for the following
DBMS_REDACT. ADD_PQLI CY f uncti on_par anet er s parameter settings.

Enter these values in the order shown:

1. m: Redacts the month. To redact with a month name, append 1-12 to lowercase
m For example, nb displays as MAY. To omit redaction, enter an uppercase M

2. d:Redacts the day of the month. To redact with a day of the month, append 1-31
to a lowercase d. For example, d7 displays as 07. If you enter a higher number
than the days of the month (for example, 31 for the month of February), then the
last day of the month is displayed (for example, 28). To omit redaction, enter an
uppercase D.

3. y: Redacts the year. To redact with a year, append 1-9999 to a lowercase y. For
example, y1984 displays as 84. To omit redaction, enter an uppercase Y.

4. h: Redacts the hour. To redact with an hour, append 0-23 to a lowercase h. For
example, h20 displays as 20. To omit redaction, enter an uppercase H.

5. m: Redacts the minute. To redact with a minute, append 0-59 to a lowercase m
For example, nBO displays as 30. To omit redaction, enter an uppercase M

6. s:Redacts the second. To redact with a second, append 0-59 to a lowercase s. For
example, s45 displays as 45. To omit redaction, enter an uppercase S.

Configuring Oracle Data Redaction Policies 10-19

Creating a Regular Expression-Based Redaction Policy

See Also:

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure (page 10-3)
for information about other DBMS_REDACT. ADD_POLI CY parameters

10.7.6.2 Example: Partial Redaction Policy Using Date-Time Data Type

The DBMS_REDACT. ADD_POQLI CY procedure can create a partial redaction policy that
uses the date-time data type.

Example 10-6 (page 10-20) shows how to partially redact a date. This example redacts
the birth year of customers; replacing it with 13, but retaining the remaining values.

Example 10-6 Partially Redacted Data Redaction Using Date-Time Values

BEG N
DBMS_REDACT. ADD_PQOLI CY(

obj ect _schema => "mvis',
obj ect _nane => "cust _info',
col um_nane => "birth_date',
pol i cy_nane => 'redact cust_hdate',
function_type => DBMS_REDACT. PARTI AL,
function_parameters => ' mdy2013H\VE ,
expressi on = "'1=1",

policy_description =>"'Replaces birth year with 2013,
colum_description => 'hirth_date contains custoner's birthdate');
END;
/

Query and redacted result:
SELECT birth_date FROM mavis. cust _info;
Bl RTH_DATE

07-DEC-13 09. 45. 40. 000000 AM
12- CCT- 13 04.23.29. 000000 AM

10.8 Creating a Regular Expression-Based Redaction Policy

A regular expression-based redaction policy enables you to redact data based on a
search-and-replace model.

Topics:

* About Creating Regular Expression-Based Redaction Policies (page 10-20)

* Syntax for Creating a Regular Expression-Based Redaction Policy (page 10-21)
* Regular Expression-Based Redaction Policies Using Formats (page 10-22)

¢ Custom Regular Expression Redaction Policies (page 10-26)

10.8.1 About Creating Regular Expression-Based Redaction Policies

Regular expression-based redaction enables you to search for patterns of data to
redact.

For example, you can use regular expressions to redact email addresses, which can
have varying character lengths. It is designed for use with character data only. You

10-20 Oracle Database Advanced Security Guide

Creating a Regular Expression-Based Redaction Policy

can use formats for the search and replace operation, or you can create custom pattern
formats.

You cannot use regular expressions to redact a subset of the values in a column. The
REGEXP_PATTERN (regular expression pattern) must match all of the values in order
for the REGEXP_REPLACE_STRI NGsetting to take effect, and the
REGEXP_REPLACE_STRI NGmust change the value.

For rows where the REGEXP_PATTERN fails to match, Data Redaction performs
DBMS_REDACT. FULL redaction. This mitigates the risk of a mistake in the
REGEXP_PATTERN which causes the regular expression to fail to match all of the
values in the column, from showing the actual data for those rows which it failed to
match.

In addition, if no change to the value occurs as a result of the
REGEXP_REPLACE_STRI NGsetting during regular expression replacement operation,
Data Redaction performs DBM5_REDACT. FULL redaction.

10.8.2 Syntax for Creating a Regular Expression-Based Redaction Policy

The r egexp_* parameters of the DBMS_REDACT. ADD_POLI CY procedure can create a
regular expression-based redaction policy.

The DBMS_REDACT. ADD_PQLI CY fields for creating a regular expression-based data
redaction policy are as follows:

DBMVS_REDACT. ADD_PCLI CY (

obj ect _schema I N VARCHAR? := NULL,
obj ect _nane I N VARCHAR?,

col um_nane I'N VARCHAR2 := NULL,
pol i cy_nane I'N VARCHAR?,
function_type I'N BI NARY_I NTEGER : = NULL,
expressi on I N VARCHAR?,

enabl e I N BOOLEAN : = TRUE,
regexp_pattern I'N VARCHAR? : = NULL,
regexp_replace_string IN VARCHAR2 := NULL,
regexp_position I'N BI NARY_I NTEGER : = 1,
I egexp_occurrence I'N Bl NARY_| NTEGER : = 0,
regexp_mat ch_parameter |N VARCHAR2 := NULL);

In this specification:

e object _schenm,obj ect _nane,col utm_nane, pol i cy_nane, expr essi on,
enabl e: See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
(page 10-3).

e function_type: Specifies the function used to set the type of redaction. Enter
DBMS_REDACT. REGEXP.

Note the following:

— When you set the f unct i on_t ype parameter to DBM5_REDACT. REGEXP,
omit the f unct i on_par anmet er s parameter.

— Specify the regular expressions—r egexp_pat t ern,r egexp_r epl ace,
regexp_position,regexp_occurrence, and
regexp_mat ch_par amet er —in much the same way that you specify the
pattern,repl ace,position,occurrence,and mat ch_par anet er
arguments to the REGEXP_REPLACE SQL function. See Oracle Database SQL
Language Reference for information about the REGEXP_REPLACE SQL function.

Configuring Oracle Data Redaction Policies 10-21

Creating a Regular Expression-Based Redaction Policy

* regexp_pattern: Describes the search pattern for data that must be matched. If
it finds a match, then Oracle Database replaces the data as specified by the
regexp_r epl ace_stri ng setting. See the following sections for more
information:

— Regular Expression-Based Redaction Policies Using Formats (page 10-22)
— Custom Regular Expression Redaction Policies (page 10-26)

e regexp_repl ace_stri ng: Specifies how you want to replace the data to be
redacted. See the following sections for more information:

— Regular Expression-Based Redaction Policies Using Formats (page 10-22)
— Custom Regular Expression Redaction Policies (page 10-26)

* regexp_posi ti on: Specifies the starting position for the string search. The value
that you enter must be a positive integer indicating the character of the
col um_nane data where Oracle Database should begin the search. The default
is 1 or the RE_BEGQ NNI NGformat, meaning that Oracle Database begins the
search at the first character of the col unm_nane data.

* regexp_occurrence: Specifies how to perform the search and replace
operation. The value that you enter must be a nonnegative integer indicating the
occurrence of the replace operation:

- If you specify O or the RE_ALL format, then Oracle Database replaces all of
the occurrences of the match.

- If you specify the RE_FI RST format, then Oracle Database replaces the first
occurrence of the match.

- If you specify a positive integer n, then Oracle Database replaces the nth
occurrence of the match.

If the occurrence is greater than 1, then the database searches for the second
occurrence beginning with the first character following the first occurrence of
pattern, and so forth.

e regexp_mat ch_par amet er: Specifies a text literal that lets you change the
default matching behavior of the function. The behavior of this parameter is the
same for this function as for the REGEXP_REPLACE SQL function. See Oracle
Database SQL Language Reference for detailed information.

To filter the search so that it is not case sensitive, specify the
RE_MATCH_CASE_| NSENSI Tl VE format.

10.8.3 Regular Expression-Based Redaction Policies Using Formats

You can use formats for both the r egexp_patternandregexp_repl ace_string
parameters in the DBMS_REDACT. ADD_PQLI CY procedure.

Topics:
e Regular Expression Formats (page 10-23)

* Example: Regular Expression Redaction Policy Using Formats (page 10-25)

10-22 Oracle Database Advanced Security Guide

Creating a Regular Expression-Based Redaction Policy

10.8.3.1 Regular Expression Formats

The regular expression formats represent commonly used expressions that you may
want to use, such as replacing digits within a credit card number.

Table 10-3 (page 10-23) describes the formats that you can use with the
regexp_patt er n parameter in the DBMS_REDACT. ADD_POLI CY procedure.

Table 10-3 Formats for the regexp_pattern Parameter
- |

Format Description

DBMS_REDACT. RE_PATTERN_ANY DIG T Searches for any digit. Replaces the identified
pattern with the characters specified by
ther egexp_r epl ace_st ri ng parameter.
The
DBMS_REDACT. RE_PATTERN ANY DI G Tis
commonly used with the following values of
the r egexp_r epl ace_st ri ng parameter:

regexp_replace_string =>
DBMS_REDACT. RE_REDACT_W TH_SI NGLE_X,

This setting replaces any matched digit with
the X character.

The following setting replaces any matched
digit with the 1 character.

regexp_repl ace_string =>
DBMVS_REDACT. RE_REDACT W TH_SI NGLE 1,

DBMS_REDACT. RE_PATTERN_CC L6_T4 Searches for the middle digits of any credit
card that has 6 leading digits and 4 trailing
digits. Replaces the identified pattern with
the characters specified by
ther egexp_r epl ace_st ri ng parameter.

The appropriate r egexp_r epl ace_string
setting to use with this format is
DBMS_REDACT. RE_REDACT_CC_M DDLE_D
I A TS, which finds any credit card that
could have 6 leading and 4 trailing digits left
as actual data. It then redacts the middle
digits.

DBVS_REDACT. RE_PATTERN _US_PHONE Searches for any U.S. telephone number.
Replaces the identified pattern with the
characters specified by
ther egexp_r epl ace_st ri ng parameter
The appropriate r egexp_r epl ace_string
setting to use with this format is
DBMS_REDACT. RE_REDACT_US _PHONE_L7,
which finds United States phone numbers
and then redacts the last 7 digits.

Configuring Oracle Data Redaction Policies 10-23

Creating a Regular Expression-Based Redaction Policy

Table 10-3 (Cont.) Formats for the regexp_pattern Parameter
|

Format Description

DBMS_REDACT. RE_PATTERN_EMAI L_ADDRE Searches for any email address. Replaces the

SS identified pattern with the characters
specified by ther egexp_r epl ace_stri ng
parameter

The appropriate r egexp_r epl ace_string
settings that you can use with this format are
as follows:

RE_REDACT_EMAI L_NAME, which finds any
email address and redacts the email user
name

RE_REDACT_EMAI L_DOVAI N, which finds
any email address and redacts the email
domain

RE_REDACT_EMNAI L_ENTI RE, which finds
any email address and redacts the entire
email address

DBV5_REDACT. RE_PATTERN_| P_ADDRESS Searches for an IP address. Replaces the
identified pattern with the characters
specified by ther egexp_r epl ace_stri ng
parameter.

The appropriate r egexp_r epl ace_string
setting to use with this format is
DBMS_REDACT. RE_REDACT_| P_L3, which
replaces the last section of the dotted decimal
string representation of an IP address with
the characters 999 to indicate that it was
redacted.

Table 10-4 (page 10-24) describes formats that you can use with the
regexp_repl ace_stri ng parameter in the DBM5S_REDACT. ADD_POLI CY
procedure.

Table 10-4 Formats for the regexp_replace_string Parameter
- |

Format Description

DBVM5_REDACT. RE_REDACT_W TH_SI Replaces the data with a single X character for each

NGLE_X of the actual data characters. For example, the
credit card number 5105 1051 0510 5100
could be replaced with XXXX XXXX XXXX XXXX.

DBV5_REDACT. RE_REDACT_W TH_SI Replaces the data with a single 1 digit for each of

NGLE 1 the actual data digits. For example, the credit card
number 5105 1051 0510 5100 could be
replaced with 1111 1111 1111 1111.

10-24 Oracle Database Advanced Security Guide

Creating a Regular Expression-Based Redaction Policy

Table 10-4 (Cont.) Formats for the regexp_replace_string Parameter

Format

Description

DBMS_REDACT. RE_REDACT_CC_M DD
LE DIG TS

DBMS_REDACT. RE_REDACT_PHONE_L
7

DBMVS_REDACT. RE_REDACT EMAI L_N
AVE

DBVS_REDACT. RE_REDACT_EMAI L_D
OVAI N

DBMS_REDACT. RE_REDACT_I P_L3

Redacts the middle digits in credit card numbers,
as specified by setting the r egexp_pat tern
parameter with the RE_PATTERN_CC _L6_T4
format. The redaction replaces each redacted
character with an X. For example, the credit card
number 5105 1051 0510 5100 could be
replaced with 5105 10XX XXXX 5100.

Redacts the last 7 digits of U.S. telephone numbers,
as specified by setting the r egexp_pat tern
parameter with the RE_PATTERN_US_PHONE
format. The redaction replaces each redacted
character with an X. This setting only applies to
hyphenated phone numbers, not phone numbers
with spaces. For example, the telephone number
415- 555- 0100 could be replaced with 415- XXX-
XXXX.

Redacts the email name as specified by setting the
regexp_pat t er n parameter with the
RE_PATTERN_EMAI L_ ADDRESS format. The
redaction replaces the email user name with four x
characters. For example, the email address

psmi t h@xanpl e. comcould be replaced with
XXXX@xanpl e. com

Redacts the email domain name as specified by
setting the r egexp_pat t er n parameter with the
RE_PATTERN_EMAI L_ ADDRESS format. The
redaction replaces the domain with five x
characters. For example, the email address

psm t h@xanpl e. comcould be replaced with
psm t h@xxxx. com

Redacts the last three digits of the IP address as
specified by setting the r egexp_pattern
parameter with the RE_PATTERN | P_ADDRESS
format. For example, the IP address 192. 0. 2. 254
could be replaced with 192. 0. 2. 999, which is an
invalid IP address.

See Also:

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure (page 10-3)
for information about other DBM5S_REDACT. ADD_POLI CY parameters

10.8.3.2 Example: Regular Expression Redaction Policy Using Formats

You can use the DBMS_REDACT. ADD_POLI CY PL/SQL procedure to create a regular
expression redaction policy that uses formats.

Example 10-7 (page 10-26) shows how to use regular expression formats to redact

credit card numbers.

Configuring Oracle Data Redaction Policies 10-25

Creating a Regular Expression-Based Redaction Policy

Example 10-7 Regular Expression Data Redaction Character Values

BEG N
DBMS_REDACT. ADD_PCLI CY(
obj ect _schema = 'mvis',
obj ect _nane => 'cust_info',
col um_nane => 'cc_num,
pol i cy_nane => 'redact _cust_cc_nums',
function_type => DBMS_REDACT. REGEXP,
function_paraneters => NULL,
expressi on = '1=1",
regexp_pattern => DBMB_REDACT. RE_PATTERN CC L6_T4,
regexp_replace_string => DBMS_REDACT. RE_REDACT_CC M DDLE DI G TS,
regexp_position => DBVS_REDACT. RE_BEG NNI NG
regexp_occurrence => DBMS_REDACT. RE_FI RST,
regexp_mat ch_paraneter => DBMS_REDACT. RE_MATCH CASE_| NSENSI Tl VE,
policy_description => 'Regul ar expressions to redact credit card nunbers',
col urm_descri ption => 'cc_num contains custonmer credit card numbers');
END;

/

Query and redacted result:

SELECT cc_num FROM mavi s. cust _i nf o;

401288 XXXXXX1881
411111XXXXXX1111
555555XKXXXX1111
511111XXXXXX1118

10.8.4 Custom Regular Expression Redaction Policies
You can customize regular expressions in Data Redaction policies.

Topics:
® Settings for Custom Regular Expressions (page 10-26)

¢ Example: Custom Regular Expression Redaction Policy (page 10-27)

10.8.4.1 Settings for Custom Regular Expressions

Oracle Data Redaction provides special settings to configure policies that use regular
expressions.

To create custom regular expression redaction policies, you use the following
parameters in the DBM5S_REDACT. ADD_POQOLI CY procedure:

e regexp_pattern: This pattern is usually a text literal and can be of any of the
data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The pattern can contain up
to 512 bytes. For further information about writing the regular expression for the
regexp_patt er n parameter, see the description of the pat t er n argument of
the REGEXP_REPLACE SQL function in Oracle Database SQL Language Reference,
because the support that Data Redaction provides for regular expression matching
is similar to that of the REGEXP_REPLACE SQL function.

e regexp_repl ace_string: This data can be of any of the data types CHAR,
VARCHAR2, NCHAR, or NVARCHAR2. The r egexp_r epl ace_st ri ng can contain
up to 500 back references to subexpressions in the form \ n, where n is a number

10-26 Oracle Database Advanced Security Guide

Creating a Random Redaction Policy

from 1 to 9. If you want to include a backslash (\) in the

regexp_r epl ace_stri ng setting, then you must precede it with the escape
character, which is also a backslash. For example, to literally replace the matched
pattern with \ 2 (rather than replace it with the second matched subexpression of
the matched pattern), you enter \ \ 2 in the r egexp_r epl ace_st ri ng setting.
For more information, see Oracle Database SQL Language Reference.

See Also:

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure (page 10-3)
for information about other DBMS_REDACT. ADD_POLI CY parameters

10.8.4.2 Example: Custom Regular Expression Redaction Policy

The DBMS_REDACT. ADD_PCLI CY procedure r egexp* parameters can create a custom
regular expression redaction policy.

Example 10-8 (page 10-27) shows how to use regular expressions to redact the

enp_i d column data. In this example, taken together, the r egexp_pat t er n and
regexp_repl ace_stri ng parameters do the following: first, find the pattern of 9
digits. For reference, break them into three groups that contain the first 3, the next 2,
and then the last 4 digits. Then, replace all 9 digits with XXXXX concatenated with the
third group (the last 4 digits) as found in the original pattern.

Query and redacted result:

SELECT enp_id FROM mavi s. cust _i nfo;

Example 10-8 Partially Redacted Data Redaction Using Regular Expressions

BEG N
DBMB_REDACT. ADD_PQLI CY(
obj ect _schema => 'mvis',
obj ect _nane => 'cust_info',
col um_nane = 'enp_id',
policy_name => 'redact _cust_ids',
function_type => DBMS_REDACT. REGEXP,
expressi on = '1=1",
regexp_pattern = " (\did\d)(\d\d) (\did\did)',
regexp_replace_string =>"XXXXX\3',
regexp_position = 1,
regexp_occurrence = 0,
regexp_mat ch_parameter => "i',
pol i cy_description => 'Redacts customer |Ds using regul ar expression',
col urm_descri ption => 'enp_id contains enployee I D nunbers');
END;

/

10.9 Creating a Random Redaction Policy

A random redaction policy presents redacted data as randomly generated values, such
asUkjsl 32[[]]]s.

Topics:

Configuring Oracle Data Redaction Policies 10-27

Creating a Random Redaction Policy

¢ Syntax for Creating a Random Redaction Policy (page 10-28)

* Example: Random Redaction Policy (page 10-28)

10.9.1 Syntax for Creating a Random Redaction Policy

A random redaction policy presents the redacted data to the querying application user
as randomly generated values, based on the column data type.

Be aware that LOB columns are not supported.

The DBMS_REDACT. ADD_PCLI CY fields for creating a random redaction policy are as
follows:

DBMS_REDACT. ADD_POLI CY (

obj ect _schema IN VARCHAR2 : = NULL,

obj ect _nane I'N VARCHAR?,

col urm_nane I'N VARCHAR2 : = NULL,

pol i cy_nane I'N VARCHAR2,

function_type I'N BI NARY_I NTEGER : = NULL,
expressi on I N VARCHARZ,

enabl e I N BOOLEAN : = TRUE);

In this specification:

e o0bj ect_schemm, obj ect _nane, col utm_nane, pol i cy_nane, expr essi on,
enabl e: See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
(page 10-3).

e function_type: Specifies the function used to set the type of redaction. Enter

DBVS_REDACT. RANDOM

If you omit the f unct i on_t ype parameter, then the default redaction
functi on_t ype setting is DBMS_REDACT. FULL.

Remember that the data type of the column determines which f uncti on_t ype
settings that you are permitted to use. See Comparison of Full, Partial, and
Random Redaction Based on Data Types (page 9-5).

10.9.2 Example: Random Redaction Policy

You can use the DBM5_REDACT. ADD_POLI CY PL/SQL procedure create a random
redaction policy.

Example 10-9 (page 10-28) shows how to generate random values. Each time you run
the SELECT statement, the output will be different.

Example 10-9 Randomly Redacted Data Redaction Values

BEG N
DBMS_REDACT. ADD_POLI CY(
obj ect _schema => 'mavis',

obj ect _nane => 'cust_info',

col urm_nane => '| ogi n_user nane',

pol i cy_nane => 'redact _cust_rand_usernane',

function_type => DBVS_REDACT. RANDOM

expression => ' SYS_CONTEXT('' USERENV' ','" SESSION USER ') = ""APP_USER '");
END;

/

Query and redacted result:

10-28 Oracle Database Advanced Security Guide

Creating a Policy That Uses No Redaction

SELECT | ogi n_username FROM mavi s. cust _i nf o;

LOG N_USERNAVE

N CE\ pTVcK

10.10 Creating a Policy That Uses No Redaction

You can create policies that use no redaction at all, for when you want to test the
policy in a development environment.

Topics:
¢ Syntax for Creating a Policy with No Redaction (page 10-29)

¢ Example: Performing No Redaction (page 10-29)

10.10.1 Syntax for Creating a Policy with No Redaction

The None redaction type option can be used to test the internal operation of redaction
policies.

The None redaction type has no effect on the query results against tables that have
policies defined on them. You can use this option to test the redaction policy
definitions before applying them to a production environment. Be aware that LOB
columns are not supported.

The DBMS_REDACT. ADD_PQLI CY fields for creating a policy with no redaction are as
follows:

DBVB_REDACT. ADD_POLI CY (

obj ect _schema IN VARCHAR2 : = NULL,

obj ect _nane I'N VARCHAR?,

col urm_nane I'N VARCHAR? : = NULL,

pol i cy_nane I'N VARCHAR?,

function_type I'N BI NARY_| NTEGER : = NULL,
expression I N VARCHAR?,

enabl e I N BOOLEAN : = TRUE);

In this specification:

e object _schenm,obj ect _nane, col utm_nane, pol i cy_nane, expr essi on,
enabl e: See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
(page 10-3).

e functi on_t ype: Specifies the functions used to set the type of data redaction.
Enter DBMS_REDACT. NONE.

If you omit the f unct i on_t ype parameter, then the default redaction
functi on_t ype setting is DBMS_REDACT. FULL.

10.10.2 Example: Performing No Redaction

The DBMS_REDACT. ADD_PCLI CY procedure can create a policy that performs no
redaction.

Example 10-10 (page 10-30) shows how to create a Data Redaction policy that does
not redact any of the displayed values.

Configuring Oracle Data Redaction Policies 10-29

Exemption of Users from Oracle Data Redaction Policies

Example 10-10 No Redacted Data Redaction Values

BEG N
DBMS_REDACT. ADD_PCLI CY(

obj ect _schema = 'mavis',
obj ect _nane => 'cust_info',
col urm_nane => 'user_nane',
policy_name => 'redact _cust_no_vals',
function_type => DBVS_REDACT. NONE,
expressi on = '1=1");

END;

/

Query and redacted result:

SELECT user_name FROM mavi s. cust _i nfo;

| DA NEAU

10.11 Exemption of Users from Oracle Data Redaction Policies

You can exempt users from having Oracle Data Redaction policies applied to the data
they access.

To do so, you should grant the users the EXEMPT REDACTI ON PQOL| CY system
privilege. Grant this privilege to trusted users only.

In addition to users who were granted this privilege, user SYS is also exempt from all
Data Redaction policies. The person who creates the Data Redaction policy is by
default not exempt from it, unless this person is user SYS or has the EXEMPT

REDACTI ON PCLI CY system privilege.

Note the following:

¢ Users who have the | NSERT privilege on a table can insert values into a redacted
column, regardless of whether a Data Redaction policy exists on the table. Data
Redaction only affects SQL SELECT statements (that is, queries) issued by a user,
and has no effect on any other SQL issued by a user, including | NSERT, UPDATE,
or DELETE statements. (See the next bullet for exceptions to this rule.)

® Users cannot perform a CREATE TABLE AS SELECT where any of the columns
being selected (source columns) is protected by a Data Redaction policy (and

similarly, any DML operation where the source is a redacted column), unless the
user was granted the EXEMPT REDACTI ON POLI| CY system privilege.

¢ The EXEMPT REDACTI ON PQLI CY system privilege is included in the DBArole,
but this privilege must be granted explicitly to users because it is not included in
the WTH ADM N OPTI ONfor DBArole grants. Users who were granted the DBA
role are exempt from redaction policies because the DBA role contains the
EXP_FULL_DATABASE role, which is granted the EXEMPT REDACTI ON PQLI CY
system privilege.

10-30 Oracle Database Advanced Security Guide

Altering an Oracle Data Redaction Policy

See Also:

e Restriction of Administrative Access to Oracle Data Redaction Policies
(page 13-2)

¢ Oracle Data Pump Security Model for Oracle Data Redaction
(page 12-4) for information about how Oracle Data Pump privileges
affect the EXEMPT REDACTI ON POLI CY system privilege

10.12 Altering an Oracle Data Redaction Policy

The DBMS_REDACT. ALTER_PQLI CY procedure enables you to modify Oracle Data
Redaction policies.

Topics:

® About Altering Oracle Data Redaction Policies (page 10-31)

¢ Syntax for the DBMS_REDACT.ALTER_POLICY Procedure (page 10-31)

e Parameters Required for DBMS_REDACT.ALTER_POLICY Actions (page 10-32)

e Tutorial: Altering an Oracle Data Redaction Policy (page 10-33)

10.12.1 About Altering Oracle Data Redaction Policies
The DBMS_REDACT. ALTER_PCLI CY procedure alters a Data Redaction policy.

If the policy is already enabled, then you do not need to disable it first, and after you
alter the policy, it remains enabled.

You can find the names of existing Data Redaction policies by querying the

POLI CY_NAME column of the REDACTI ON_POLI Cl ES data dictionary view, and
information about the columns, functions, and parameters specified in a policy by
querying the REDACTI ON_COLUMWNS view. To find the current value for policies that
use full data redaction, you can query the REDACTI ON_VALUES FOR TYPE_FULL
data dictionary view.

The act i on parameter specifies the type of modification that you want to perform. At
a minimum, you must include the obj ect _nane and pol i cy_nane parameters
when you run this procedure.

10.12.2 Syntax for the DBMS_REDACT.ALTER_POLICY Procedure

The DBMS_REDACT. ALTER_PQLI CY procedure syntax can be used to alter all types of
the Data Redaction policies.

The syntax for the DBMS_REDACT. ALTER_PCQLI CY procedure is as follows:
DBMVS_REDACT. ALTER PCLI CY (

obj ect _schema I'N VARCHAR2 : = NULL,

obj ect _nane I'N VARCHAR2 : = NULL,

pol i cy_nane I'N VARCHAR2,

action I'N Bl NARY_| NTEGER : = DBMS_REDACT. ADD_COLUW,
col urm_nane I N VARCHAR? : = NULL,

function_type I'N BI NARY_| NTEGER : = DBMS_REDACT. FULL,
function_paraneters I'N VARCHAR2 : = NULL,

expression I N VARCHAR? : = NULL,

regexp_pattern I'N VARCHAR? : = NULL,

Configuring Oracle Data Redaction Policies 10-31

Altering an Oracle Data Redaction Policy

regexp_replace_string |N VARCHAR2 := NULL

regexp_position I'N Bl NARY_| NTEGER : = NULL,
r egexp_occurrence I'N BI NARY_I NTEGER : = NULL,
regexp_mat ch_parameter | N VARCHAR2 : = NULL,

pol i cy_description I'N VARCHAR2 : = NULL,

col urm_descri ption I'N VARCHAR2 : = NULL);

In this specification:
* acti on: Enter one of the following values to define the kind of action to use:

— DBMS_REDACT. MODI FY_COLUWf you plan to change the col urm_nare
value.

— DBMS_REDACT. ADD_COLUWf you plan to add a new column (in addition to
columns that are already protected by the policy) for redaction. This setting is
the default for the act i on parameter.

- DBMS_REDACT. DROP_COLUWNif you want to remove redaction from a
column.

— DBM5_REDACT. MODI FY_EXPRESSI ONif you plan to change the
expr essi on value. Each policy can have only one policy expression. In other
words, when you modify the policy expression, you are replacing the existing
policy expression with a new policy expression.

— DBMS_REDACT. SET_POLI CY_DESCRI PTI ONif you want to change the
description of the policy.

— DBM5_REDACT. SET_COLUWMN_DESCRI PTI ONif you want to change the
description of the column.

See Also:

® Parameters Required for DBMS_REDACT.ALTER_POLICY Actions
(page 10-32)

¢ General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
(page 10-3) for information about the remaining parameters

10.12.3 Parameters Required for DBMS_REDACT.ALTER_POLICY Actions

The DBMS_REDACT. ALTER_POLI CY procedure provides parameters than can
perform various actions, such as adding or modifying a column.

Table 10-5 (page 10-32) shows the combinations of these parameters.

Table 10-5 Parameters Required for Various DBMS_REDACT.ALTER_POLICY
Actions

]
Desired Alteration Parameters to Set
Add or modify a column e action (DBVMS_REDACT. MODI FY_COLUWN)

e col um_nane

e function_type

e function_parameters (if necessary)
* regexp* (if necessary)

10-32 Oracle Database Advanced Security Guide

Altering an Oracle Data Redaction Policy

Table 10-5 (Cont.) Parameters Required for Various

DBMS_REDACT.ALTER_POLICY Actions
I

Desired Alteration Parameters to Set

Change the policy expression e action (DBMS_REDACT. MODI FY_EXPRESSI ON)
e expression

Change the description of the e action

policy (DBMS_REDACT. SET_POLI CY_DESCRI PTI ON)
e policy_description

Change the description of the e action

column (DBMS_REDACT. SET_COLUMN_DESCRI PTI ON)

e columm_description

Drop a column e action (DBVS_REDACT. DROP_COLUMWN)
e col um_nane

10.12.4 Tutorial: Altering an Oracle Data Redaction Policy

You can redact multiple columns in a table or view, with each column having its own
redaction setting.

The exercise in this section shows how to modify a Data Redaction policy so that
multiple columns are redacted. It also shows how to change the expr essi on setting
for the policy. To accomplish this, you must run the DBM5_REDACT. ALTER _POLI CY
procedure in stages.

1. Connect as a user who has privileges to create users and grant them privileges.

For example:

CONNECT sec_adnin
Enter password: password

2. Create the following users:

GRANT CREATE SESSI ON TO dr _admi n | DENTI FI ED BY passwor d;
GRANT CREATE SESSI ON TO sal es_rep | DENTI FI ED BY password;
GRANT CREATE SESSI ON TO support _rep | DENTI FI ED BY passwor d;

3. Grant EXECUTE on the DBM5_REDACT PL/SQL package to user dr _adnmi n:
GRANT EXECUTE ON DBMS_REDACT TO dr_adni n;

4. Connect as user CE.

CONNECT CE
Enter password: password

5. Create and populate a table that contains customer credit card information.

CREATE TABLE cust _order _i nf o(
first_nane varchar2(20),

| ast _nane varchar 2(20),
address varchar2(30),

city varchar2(30),

state varchar2(3),

zip varchar2(5),

cc_num varchar(19),

Configuring Oracle Data Redaction Policies 10-33

Altering an Oracle Data Redaction Policy

10.

cc_exp varchar2(7));

I NSERT | NTO cust _order _i nfo VALUES (' Jane', ' Dough','39 Mockingbird Lane', 'San
Francisco', 'CA', 94114, '5105 1051 0510 5100', '10/2018');

| NSERT | NTO cust _order _info VALUES (' Mary','Hi ghtower','2319 Maple Street',
"Sonoma', 'CA', 95476, '5111 1111 1111 1118', '03/2019');

I NSERT | NTO cust _order_info VALUES (' Herbert',' Donahue','292 Wnsome Way', 'San
Francisco', 'CA', 94117, '5454 5454 5454 5454' '(08/2018');

Grant the SELECT privilege on the cust _or der _i nf o table to the sal es_r ep
and support _rep users.

GRANT SELECT ON cust _order_info TO sal es_rep, support_rep;

Connect as user dr _admi n.

CONNECT dr _adnin
Enter password: password

Create and enable policy to redact the credit card number.

BEG N DBMS_REDACT. ADD_POLI CY(

obj ect _schema = 'oe',

obj ect _nane => 'cust_order_info',

col urm_nane => 'cc_num,

pol i cy_nane => 'redact _cust_cc_info',

function_type => DBMS_REDACT. REGEXP,
function_paraneters => NULL,

expressi on = '1=1",

regexp_pattern => DBMS_REDACT. RE_PATTERN_CCN,
regexp_replace_string => DBMS_REDACT. RE_REDACT_CCN,
regexp_position => NULL,

regexp_occurrence => NULL,

regexp_mat ch_par anet er => NULL,

policy_description => 'Partially redacts credit card info',
col urm_descri ption => 'cc_numnunber lists credit card nunbers');

END;
/

Modify the policy to include redaction of the expiration date.
BEG N DBMS_REDACT. ALTER PCLI CY(

obj ect _schema = 'oe¢',

obj ect _nane => 'cust_order_info',
policy_name => 'redact _cust _cc_info',
action => DBM5_REDACT. ADD_CCOLUW,
col um_nane =>'cc_exp',

function_type => DBVS_REDACT. RANDOM
expressi on = "'1-1');

END;
/

Modify the policy again, to use a condition so that the sal es_r ep user views the
redacted values and the support _r ep user views the actual data.

BEG N
DBVS_REDACT. ALTER_POLI CY(
obj ect _schema = 'oe',
obj ect _nane => 'cust_order_info',
pol i cy_name => 'redact _cust_cc_info',
action => DBMS_REDACT. MODI FY_EXPRESSI ON,
expr essi on => ' SYS_CONTEXT(' ' USERENV' ', "' SESSI ON USER ') =

10-34 Oracle Database Advanced Security Guide

Altering an Oracle Data Redaction Policy

11.

12.

13.

"' SALES REP''');
END;
/

To test the policy, have the two users query the cust _or der _i nf o table.

CONNECT suport _rep
Enter password: password

SELECT cc_num cc_exp FROM CE. cust _order _info;

5105 1051 0510 5100 10/2018
5111 1111 1111 1118 03/2019
5454 5454 5454 5454 08/ 2018

User support _rep can view the actual data.

CONNECT sal es_rep
Enter password: password

SELECT cc_num cc_exp FROM CE. cust _order _info;

************5100 |ST:033
************1119 QAMC
************5454 B(9+QI_

The actual data is redacted using for user sal es_r ep.

Alter the cust _or der _i nf 0 to include a condition so that only support _rep

can see the redacted data but sal es_r ep cannot.

CONNECT dr _adnin
Enter password: password

BEG N

DBMS_REDACT. ALTER_POLI CY(

obj ect _schema = 'oe',

obj ect _nane => 'cust_order_info',

pol i cy_name => 'redact _cust_cc_info',

action => DBM5_REDACT. MODI FY_EXPRESSI ON,

expression => ' SYS_CONTEXT('"' USERENV' ', "' SESSION_USER ') =
" SUPPORT_REP' ' ');
END;

/

Have the users test the policy again.

CONNECT support _rep
Enter password: password

SELECT cc_num cc_exp FROM CE. cust _order _info;

************5100 1/\XNF~\
************1119 qz+9=#s
************5454 *K(:aLkm

Configuring Oracle Data Redaction Policies 10-35

Redacting Multiple Columns

User suppor t _r ep can no longer view the actual data; it is now redacted.

CONNECT sal es_rep
Enter password: password

SELECT cc_num cc_exp FROM CE. cust _order _info;

5105 1051 0510 5100 10/2018
5111 1111 1111 1118 03/2019
5454 5454 5454 5454 08/2018

User sal es_r ep now can view the actual data.

14. If you do not need the components of this tutorial, then you can remove them as
follows:

CONNECT dr _adnin
Enter password: password

BEG N
DBMS_REDACT. DROP_PQLI CY (
obj ect _schema =>'oe',
obj ect _nane => 'cust_order_info',
pol i cy_nane => 'redact _cust_cc_info');
END;
/

CONNECT sec_adnin
Enter password: password

DROP USER dr_adni n;
DROP USER sal es_rep;
DROP USER support _rep;

CONNECT CE
Enter password: password

DROP TABLE cust _order _info;

10.13 Redacting Multiple Columns

You can redact more than one column in a Data Redaction policy.

Topics:

¢ Adding Columns to a Data Redaction Policy for a Single Table or View
(page 10-36)

e Example: Redacting Multiple Columns (page 10-37)

10.13.1 Adding Columns to a Data Redaction Policy for a Single Table or View

You can redact columns of different data types, using different redaction types, for one
table or view.

1. Create the policy for the first column that you want to redact.

2. Use the DBMS_REDACT. ALTER_PCLI CY procedure to add the next column to the
policy.

10-36 Oracle Database Advanced Security Guide

Disabling and Enabling an Oracle Data Redaction Policy

As necessary, set the act i on, col unm_nane, f uncti on_t ype, and

functi on_par anet er s (or the parameters that begin with r egexp_)
parameters to define the redaction for the new column, but do not change the

obj ect _schemm, obj ect _nane, pol i cy_nanme, or expr essi on parameters.
Each redacted column continues to have the same redaction parameters that were
used to create it.

10.13.2 Example: Redacting Multiple Columns
The DBVM5_REDACT. ALTER_POLI CY procedure can redact multiple columns.

Example 10-11 (page 10-37) shows how to add a column to an existing Data
Redaction policy. In this example, the act i on parameter specifies that a new column
must be added, using DBMS_REDACT. ADD_COLUMWN. The name of the new column,
car d_num is set by the col unn_namne parameter.

Example 10-11 Adding a Column to a Data Redaction Policy

BEG N
DBMS_REDACT. ALTER POLI CY(
obj ect _schema => "mvis',
obj ect _nane => 'cust _info',
pol i cy_name => 'redact cust_user_ids',
action => DBMS_REDACT. ADD_COLUMW,
col um_nane => 'card_num,
function_type => DBMS_REDACT. FULL,
function_paraneters => "',
expressi on => ' SYS_CONTEXT('"' SYS_SESSION ROLES'',"'ADM"') = '""TRUE '');
END;

/

10.14 Disabling and Enabling an Oracle Data Redaction Policy

After you have created an Oracle Data Redaction policy, you can disable it and then
reenable it as necessary.

Topics:
e Disabling an Oracle Data Redaction Policy (page 10-37)

* Enabling an Oracle Data Redaction Policy (page 10-38)

10.14.1 Disabling an Oracle Data Redaction Policy

The DBMS_REDACT. DI SABLE_POLI CY procedure disables Oracle Data Redaction
policies.

You can find the names of existing Data Redaction policies and whether they are
enabled by querying the POLI CY_NAME and ENABLE columns of the

REDACTI ON_PCLI CI ES view. However, as long as the policy still exists, you cannot
create another policy for that table or view, even if the original policy is disabled. In
other words, if you want to create a different policy on the same table column, then
you must drop the first policy before you can create and use the new policy.

* Todisable a Data Redaction policy, run the DBMS_REDACT. DI SABLE_PCLI CY
procedure, using the following syntax:

DBMS_REDACT. DI SABLE_PCLI CY (

obj ect _schema I'N VARCHAR2 DEFAULT NULL,
obj ect _nane I'N VARCHAR2,
pol i cy_nane I'N VARCHAR?) ;

Configuring Oracle Data Redaction Policies 10-37

Disabling and Enabling an Oracle Data Redaction Policy

In this specification:

— obj ect _schema: Specifies the schema of the object on which the Data
Redaction policy will be applied. If you omit this setting (or enter NULL), then
Oracle Database uses the name of the current schema.

— obj ect _nane: Specifies the name of the table or view to be used for the Data
Redaction policy.

- policy_namne: Specifies the name of the policy to be disabled.
Example 10-12 (page 10-38) shows how to disable a Data Redaction policy.
Example 10-12 Disabling a Data Redaction Policy

BEG N
DBVS_REDACT. DI SABLE_POLI CY (
obj ect _schema => 'mavis',
obj ect _nane => 'cust_info',
pol i cy_nane => 'redact _cust _user_ids');
END;
/

10.14.2 Enabling an Oracle Data Redaction Policy

The DBMS_REDACT. ENABLE_POLI CY procedure enables Oracle Data Redaction
policies.

Immediately after you create a new policy, you do not need to enable it; the creation
process handles that for you. To find the names of existing Data Redaction policies
and whether they are enabled, you can query the POLI CY_NAME and ENABLE columns
of the REDACTI ON_POLI Cl ES view. After you run the procedure to enable the policy,
the enablement takes effect immediately.

* Toenable a Data Redaction policy, run the DBMS_REDACT. ENABLE_POLI CY
procedure, using the following syntax.

DBNVS_REDACT. ENABLE_POLI CY (

obj ect _schema I'N VARCHAR2 DEFAULT NULL,
obj ect _nane I'N VARCHAR2,
pol i cy_nane I'N VARCHAR?) ;

In this specification:

— obj ect _schema: Specifies the schema of the object on which the Data
Redaction policy will be applied. If you omit this setting (or enter NULL), then
Oracle Database uses the name of the current schema.

— obj ect _nane: Specifies the name of the table or view to be used for the Data
Redaction policy.

— policy_nane: Specifies the name of the policy to be enabled.
Example 10-13 (page 10-38) shows how to enable a Data Redaction policy.
Example 10-13 Enabling a Data Redaction Policy

BEG N
DBVS_REDACT. ENABLE_PCLI CY (
obj ect _schema => 'mavis',
obj ect _nane => 'cust_info',
pol i cy_nane => 'redact _cust _user_ids');

10-38 Oracle Database Advanced Security Guide

Dropping an Oracle Data Redaction Policy

END;
/

10.15 Dropping an Oracle Data Redaction Policy

The DBMS_REDACT. DROP_POQOLI CY procedure drops Oracle Data Redaction policies.

You can drop an Oracle Data Redaction policy whether it is enabled or disabled. You
can find the names of existing Data Redaction policies, by querying the POLI CY_NAME
column of the REDACTI ON_PCOLI Cl ES view. When you drop a table or view that is
associated with an Oracle Data Redaction policy, the policy is automatically dropped.
As a best practice, drop the policy first, and then drop the table or view afterward. See
Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled

(page 13-3) for more information.

¢ To drop a Data Redaction policy, run the DBM5_REDACT. DROP_PQOLI CY

procedure.

Use the following syntax:

DBMS_REDACT. DROP_PQLI CY (
obj ect _schema I'N VARCHAR2 DEFAULT NULL,
obj ect _nane I'N VARCHAR2,
pol i cy_name I'N VARCHAR?) ;

In this specification:

— obj ect _schena: Specifies the schema of the object to which the Data
Redaction policy applies. If you omit this setting (or enter NULL), then Oracle
Database uses the name of the current schema.

— obj ect _name: Specifies the name of the table or view to be used for the Data
Redaction policy.

— pol i cy_nane: Specifies the name of the policy to be dropped.

After you run the DBM5_REDACT. DROP_POLI CY procedure, the drop takes effect
immediately.

Example 10-14 (page 10-39) shows how to drop a Data Redaction policy.
Example 10-14 Dropping a Data Redaction Policy

BEG N
DBVS_REDACT. DROP_PQLI CY (
obj ect _schema => 'mavis',
obj ect _nane => "'cust _info',
pol i cy_name => 'redact _cust _user_ids');
END;
/

10.16 Tutorial: SQL Expressions to Build Reports with Redacted Values

SQL expressions can be used to build reports based on columns that have Oracle Data
Redaction policies defined on them.

The values used in the SQL expression will be redacted. This redaction occurs in such
a way that the redaction takes place before the SQL expression is evaluated: the result
value that is displayed in the report is the end result of the evaluated SQL expression
over the redacted values, rather than the redacted result of the SQL expression as a
whole.

Configuring Oracle Data Redaction Policies 10-39

Tutorial: SQL Expressions to Build Reports with Redacted Values

1. Create the following Data Redaction policy for the HR. EMPLOYEES table.

This policy will replace the first 4 digits of the value from the SALARY column
with the number 9 and the first digit of the value from the COVM SSI ON_PCT
column with a 9.

BEG N
DBMS_REDACT. ADD_PQLI CY(

obj ect _schema = 'HR,
obj ect _nane => ' EMPLOYEES',
col um_nane => ' SALARY",
col urm_descri ption => 'enp_sal _conm shows enpl oyee sal ary and commi ssion',
pol i cy_name => 'redact _enp_sal _comi,
pol i cy_description => 'Partially redacts the enp_sal _comm col um',
function_type => DBMS_REDACT. PARTI AL,
function_paraneters =>"'9,14",
expression = "1=1");

END;

/

BEG N

DBMS_REDACT. ALTER_PCLI CY(

obj ect _schema = 'HR,
obj ect _nane => ' EMPLOYEES',
pol i cy_name => 'redact _enp_sal _comi,
action => DBMS_REDACT. ADD_COLUW,
col um_nane => ' COW SSI ON_PCT",
function_type => DBMS_REDACT. PARTI AL,
function_paraneters ="'9,11",
expression = "1=1");

END;

/

2. Log in to the HRschema and then run the following report.

This report will use the SQL expression (SALARY + COWM SSI ON_PCT) to
combine the employees' salaries and commissions.

SELECT (SALARY + COWM SSI ON_PCT) total _enp_conpensation
FROM HR. EMPLOYEES
WHERE DEPARTMENT_| D = 80;

TOTAL_EMP_COVPENSATI ON
9999.9

9999. 95

99990. 95

3. Use SQL expressions for the report, including concatenation.
For example:

SELECT ' Enpl oyee 1D’ || EMPLOYEE_ID ||

' has a salary of ' || SALARY ||

' and a commission of ' || COMM SSION_PCT || '.' detailed_enp_conpensation
FROM HR. EMPLOYEES

WHERE DEPARTMENT_I D = 80

ORDER BY EMPLOYEE_| D;

DETAI LED_EMP_COVPENSATI ON

Enpl oyee 1D 150 has a salary of 99990 and a conmission of .9.
Enpl oyee 1D 151 has a salary of 9999 and a commission of .95.

10-40 Oracle Database Advanced Security Guide

Oracle Data Redaction Policy Data Dictionary Views

Enpl oyee 1D 152 has a salary of 9999 and a commission of .95.

4. Connect the user who created the r edact _enp_sal _conmData Redaction policy
and then run the following statement to drop the policy.

BEG N
DBMS_REDACT. DROP_PQLI CY (
obj ect _schema => 'HR,
object _name => ' EMPLOYEES',
policy_name => 'redact_enp_sal _comi);
END;
/

10.17 Oracle Data Redaction Policy Data Dictionary Views

Oracle Database provides data dictionary views that list information about Data
Redaction policies.

Before you can query these views, you must be granted the SELECT_CATALOG _ROLE
role.

Table 10-6 (page 10-41) lists the Data Redaction data dictionary views.

Table 10-6 Data Redaction Views

View Description

REDACTI ON_COLUWNS Describes all of the redacted columns in the database,
providing the the owner of the table or view within
which the column resides, the object name, the column
name, the type of redaction function, the parameters to
the redaction function (if any), and a description of the
redaction policy. If a policy expression has been created,
displays the default object-wide policy expression’s SQL

expression.

REDACTI ON_EXPRESSI ONS Displays the names of existing policy expressions and
their SQL expressions

REDACTI ON_PQLI CI ES Describes all of the data redaction policies in the

database. It includes information about the object owner,
object name, policy name, policy expression, whether the
policy is enabled, and a description of the Data
Redaction policy.

REDACTI ON_VALUES _FOR TYPE Shows the current redaction values for Data Redaction
_FULL policies that use full redaction

Configuring Oracle Data Redaction Policies 10-41

Oracle Data Redaction Policy Data Dictionary Views

10-42 Advanced Security Guide

11

Using Oracle Data Redaction in Oracle

Enterprise Manager

Oracle Enterprise Manager Cloud Control (Cloud Control) enables you to manage
Oracle Data Redaction policies and formats.

Topics:

About Using Oracle Data Redaction in Oracle Enterprise Manager (page 11-1)
Oracle Data Redaction Workflow (page 11-2)
Management of Sensitive Column Types in Enterprise Manager (page 11-2)

Managing Oracle Data Redaction Formats Using Enterprise Manager
(page 11-4)

Managing Oracle Data Redaction Policies Using Enterprise Manager (page 11-9)

11.1 About Using Oracle Data Redaction in Oracle Enterprise Manager

Oracle Enterprise Manager Cloud Control provides an unified user interface for
creating and managing Oracle Data Redaction policies.

Starting with the Oracle Enterprise Manager 12c Database plug-in 12.1.0.7, you can do
the following;:

Create and manage custom Oracle Data Redaction formats, which were
previously known as Data Redaction shortcuts. (This functionality is not available
from the command line.)

Create and manage sensitive column types directly from the Oracle Data
Redaction pages. While you create a Data Redaction policy, Cloud Control uses
sensitive column types to obtain the Oracle Data Redaction formats that are
relevant to the column that you are redacting.

Note:

You can redact data in Oracle Database Enterprise Edition 11.2.0.4 or later by
using Oracle Enterprise Manager, starting with Oracle Enterprise Manager
12c. However, before you can create custom redaction formats and sensitive
column types, you must deploy the Enterprise Manager for Oracle Database
plug-in 12.1.0.7 or higher.

For information about how to deploy a plug-in, see Enterprise Manager Cloud
Control Administrator’s Guide.

Using Oracle Data Redaction in Oracle Enterprise Manager 11-1

Oracle Data Redaction Workflow

11.2 Oracle Data Redaction Workflow

First, you should create sensitive column types and formats if necessary, and then
create the Oracle Data Redaction policy afterward.

The following figure illustrates this process:

Step 1 Step 2 Step 3
Create Sensitive Create Oracle Create an Oracle
Column Types | Data Redaction | __, Data Redaction
(Optional) Formats Policy

(Optional)

1. (Optional) If you want to map the database columns (that contain the data that
you want to redact) to new sensitive column types, then create the required
sensitive column types as described in Management of Sensitive Column Types in
Enterprise Manager (page 11-2).

2. (Optional) If you want to redact the data (present in a particular database column)
using a custom redaction format, then create the required redaction format as
described in Creating a Custom Oracle Data Redaction Format (page 11-5).

3. Create an Oracle Data Redaction policy for the required database, as described in
Creating an Oracle Data Redaction Policy Using Enterprise Manager
(page 11-10).

Note:

When you create an Oracle Data Redaction policy, it is enabled by default. For
information on how to disable an enabled redaction policy, see Enabling or
Disabling an Oracle Data Redaction Policy in Enterprise Manager

(page 11-15).

11.3 Management of Sensitive Column Types in Enterprise Manager

A sensitive column type categorizes table column sensitive information into a sensitive
information type, such as credit card numbers.

Sensitive column types use a combination of the column name, column comments,
and the data pattern defined using a regular expression to tag a column to a particular
sensitive information type.

While you create Oracle Data Redaction policies, redaction formats are filtered on the
basis of the chosen sensitive column type, thus saving time and effort. For example, if
the database table column that you want to redact contains U.S. Social Security
numbers, and you select the SOCI AL_SECURI TY_NUMBER sensitive column type for
the column while adding it to the Oracle Data Redaction policy, the default redaction
formats that you can use to redact the column data are filtered, and only the relevant
redaction formats are displayed.

Figure 11-1 (page 11-3) illustrates the filtering of Oracle Data Redaction formats
based on sensitive column types.

11-2 Oracle Database Advanced Security Guide

Management of Sensitive Column Types in Enterprise Manager

Figure 11-1 Oracle Data Redaction Formats Filtered on the Basis of Sensitive
Column Types

*Column 1D EI i
Column Datatype NUMBER.
|5ensin‘ve Column Type SOCIAL_SECURITY_NUMBER [=] |

Redaction Format Custom

Custom

* Redaction Function

U.5. Social Security Mumbers - Random
Regular Expression Based Redachion. Spedi
column data that will be redacted.

Function Attributes
*Pattern

Specifies the regular expression pattern to be sef
Example: "\d\d\d\d\d\de 78" for number like '0123{

* Replace String

Example: Use "KXXXXX\3' {replace string) to reda:
"(id\d\d) (\d\d'd) (\d\d\d)' {regexp pattern) to

Note:

This functionality is available only if you have the Enterprise Manager for
Oracle Database plug-in 12.1.0.7 or later deployed in your system.

For information on how to verify the plug-ins deployed in your environment,
see Enterprise Manager Cloud Control Administrator’s Guide..

As part of the Application Data Modelling feature, Oracle provides a number of
default sensitive column types that a database column can be mapped to.

Figure 11-2 (page 11-3) displays some of the default sensitive column types.

Figure 11-2 Default Sensitive Column Types

Application Data Modeling) ~

Application Data Modeling > Sensitive Column Types
Sensitive Column Types

View v | [JCreate.. [¥Createlie.. FEdt.. 3K Deeten. | [y

‘Name Description Author
[*]CREDIT_CARD_NUMBER Identifies credit card number columns. Samples: 5199-1234-1234-1234, 37-1234557890123, .. Crade
[Z]EmaLL_1o Identifies email address columns. Samples: jsmith@comgmt, com, JaddeSmith-42@alumni.mit.... Orade
[#]1P_ADDRESS Tdentifies IP address columns. Samples: 7.7.7.1, 78.78.78.12, 739.789.789.123 Crade
[#]13BN_10 Identifies 10 digit International Standard Book Number columns. Samples: 1SBN-10: 6-62-529.. Orade
[#]15BN_13 Identifies 13 digit International Standard Book Number columns. Samples: 1SBN-13: 978-1-75... Orade
[Z]NATIONAL_INSURANCE_NUMBER Identifies National Insurance number (UK) columns, Samples: ZR 50 16 33 4, ZRS016334 Crade
[Z]PHONE_NUMBER. Identifies phone number columns. Samples: 555-1212, (123)555-1212, 1235551212, +12345.. Orade
[*]S0OCIAL_INSURANCE_NUMEER. Identifies Sodal Insurance Number (Canada) columins, Samples: 834-099-029, 2273 123 456,... Orade
[*]50CIAL_SECURITY_NUMEER Identifies Sodal Security number columns, Samples: 123-45-6789, 123456789 Orade
[=]UNDEFINED Sensitive column type not defined, Crads
[*JUNIVERSAL_PRODUCT_CODE Tdentifies Universal Product Code columns. Samples: 1-23456-78901-2, 1 23455 789012, 12, Orade

If none of the default sensitive column types are suitable for the database column that
contains the data that you want to redact, you can create a new sensitive column type,
or create a sensitive column type that is based on an existing sensitive column type, as
described in Oracle Database Testing Guide..

Using Oracle Data Redaction in Oracle Enterprise Manager 11-3

Managing Oracle Data Redaction Formats Using Enterprise Manager

11.4 Managing Oracle Data Redaction Formats Using Enterprise Manager

Oracle Data Redaction provides redaction formats that can be used directly within a
redaction policy to redact data.

Topics:

About Managing Oracle Data Redaction Formats Using Enterprise Manager

(page 11-4)

Creating a Custom Oracle Data Redaction Format (page 11-5)

Editing a Custom Oracle Data Redaction Format (page 11-7)

Viewing Oracle Data Redaction Formats (page 11-7)

Deleting a Custom Oracle Data Redaction Format (page 11-8)

11.4.1 About Managing Oracle Data Redaction Formats Using Enterprise Manager

The Oracle Data Redaction formats are used for commonly redacted data, such as ID
numbers, credit cards, or phone numbers.

Oracle Database provides several default Oracle Data Redaction formats.

Figure 11-3 (page 11-4) displays the default Oracle Data Redaction formats.

Figure 11-3 Default Oracle Data Redaction Formats

Palicies

Data Redaction

Oracle Data Redaction provides an easy way to quickly redact sensitive information that is displayed in applications without altering the underlying database blodks on disk or in cache.

Formats

¥ Create Like 7 Edit

Create

Format Name

American Express Credit Card Mumbers - Formatted
American Express Credit Card Mumbers - NUMBER
American Express Credit Card Mumbers - Partially Redacted
American Express Credit Card Numbers - Random
Canadian Social Insurance Numbers - Formatted

Canadian Sodial Insurance Mumbers - NUMBER.
Canadian Sodial Insurance Numbers - Random
Canadian Sodal Insurance Mumbers - VARCHAR
Credit Card Mumbers - Formatted

Credit Card Numbers - NUMBER.

Credit Card Numbers - Partially Redacted
Credit Card Numbers - Random
Date to Epach

Date to Millennium

Email Addresses

IP Addresses

Morth American Phone Numbers
Morth American Phone Numbers
Nerth American Phone Mumbers - Randem
Narth American Phone Numbers - VARCHAR
Singapore NRIC Numbers - Random

.5, Sodal Security Mumbers - Formatted
U.5. Sodal Security Numbers - NUMBER
U.5. Sodal Security Mumbers - Random

U.5. Sodal Security Numbers - VARCHAR
U.5. Zip Code

UK National Insurance Numbers - Formatted
UK National Insurance Numbers - Random
UK Mational Insurance Numbers - VARCHAR
UPC Mumbers - Random

- Formatted
- MUMBER.

O View

9 Delete

Sensitive Column Type

CREDIT_CARD_NUMBER
CREDIT_CARD_MNUMBER
CREDIT_CARD_MNUMBER
CREDIT_CARD_MUMBER
SOCTAL_THNSURAMCE _NUMBER
SOCIAL_TNSURAMCE_NUMBER.
SOCIAL_INSURAMCE NUMBER
SOCIAL_TNSURANCE _NUMBER.
CREDIT_CARD_NUMBER
CREDIT_CARD_MUMBER
CREDIT_CARD_MUMEER
CREDIT_CARD_MUMBER
UNDEFIMED

UNDEFINED

EMAILL_ID

IP_ADDRESS

PHOME_NUMBER
PHOME_NUMBER.
PHOME_NUMBER.
PHOME_NUMBER,

UNDEFINED
SOCIAL_SECURITY_MUMBER
SOCIAL_SECURITY_MUMBER
SOCIAL_SECURITY_MUMBER
SOCIAL_SECURITY_NUMBER
UMNDEFIMED

NATIONAL _INSURANCE_NUMBER
NATIONAL _INSURANCE_MUMBER.
NATIONAL _INSURANCE_MUMBER.
UNIVERSAL_PRODUCT _CODE

Eﬂ'} Refresh Qg Manage Sensitive Column Types

Function
Type
PARTIAL
PARTIAL
REGEX
RANDOM
PARTIAL
PARTIAL
RANDOM
PARTIAL
PARTIAL
PARTIAL
REGEX
RANDOM
PARTIAL
PARTIAL
REGEX
REGEX
REGEX
PARTIAL
RANDOM
PARTIAL
RANDOM
PARTIAL
PARTIAL
RANDOM
PARTIAL
PARTIAL
PARTIAL
RANDOM
PARTIAL
RANDOM

Description

Redact the American Express Credit Card Number by replacing all 4
Redact the American Express Credit Card Number by replacing all 4
Redact the American Express Credit Card Number by replacing all
Redact the American Express Credit Card Number by replacing all
Redact the Canadian Sodal Insurance Number by replacing the firs|
Redact the Canadian Socdal Insurance number by replacing the firs|
Redact the Canadian Social Insurance Number by replacing all digity
Redact the Canadian Social Insurance number by repladng the firs|
Redact the Credit Card Mumber by replacing everything but the ladg
Redact the Credit Card Number by replacing everything but the lag
Redact the Credit Card Mumber by replacing everything but the lag
Redact the Credit Card Mumber by replacing all digits with random
Redacts all dates to Jan 1st, 1970

Redacts all dates to Jan 1st, 2000

Redact the Email address by replacing the username with "o, A
Redact the IP address by replacing the machine/last quadrant of th
Redact the North American Phone Number by leaving the area cody
Redact the North American Phone Number by leaving the area codi
Redact the North American Phone Number by replacing all digits wil
Redact the North American Phone Number by leaving the area codi
Redact the Singapore NRIC Number by replacing all digits with ran
Redact the U.5. Sodal Security Number by replacing the first 5 digi
Redact the U.5. Sodal Seaurity Number by replacing the first 5 digi
Redact the U.5. Socdal Security Number by replacing all digits with
Redact the U.5. Sodal Security Number by replacing the first 5 digi
Redact the U.5. Zip Code by replacing all zip codes with "99939"
Redact the UK National Insurance Mumber by replacing the first &
Redact the UK Mational Insurance Mumber by replacing all charactsy
Redact the UK National Insurance Mumber by replacing the first &
Redact the UPC Number by replacing all digits with random digits

Each default Oracle Data Redaction format consists of a specific redaction function
that determines the redacted output when the redaction format is used in an Oracle
Data Redaction policy. For example, the Credit Card Numbers - NUMBERdefault
redaction format replaces the first twelve digits of the column data with the digit 0,
when it is used in an Oracle Data Redaction policy. That is, if the column data is
5555555555554444, the redacted output will be 0000000000004444.

11-4 Oracle Database Advanced Security Guide

Managing Oracle Data Redaction Formats Using Enterprise Manager

If you have deployed the Enterprise Manager for Oracle Database plug-in 12.1.0.7 or
higher on your system, then you can also create and save custom redaction formats,
which you can then use in your redaction policies.

11.4.2 Creating a Custom Oracle Data Redaction Format

You can create and save custom Oracle Data Redaction formats using Enterprise
Manager Cloud Control.

1.

Log into Oracle Enterprise Manager Cloud Control as either user SYSTEMor
SYSVAN

The URL is as follows:

https://host:port/em

From the Targets menu, select Databases.

Select Search List, then click the name of a database target.

On the home page of the database target, from the Security menu, select Data
Redaction.

Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBMS_REDACT PL/SQL package.

Select the Formats tab and then click Create.

If you want to create a custom redaction format that is based on, or is similar to an
existing redaction format, then click Create Like.

If you select Create, then the following dialog box appears:

Using Oracle Data Redaction in Oracle Enterprise Manager 11-5

Managing Oracle Data Redaction Formats Using Enterprise Manager

Create *

* Format Marme
* Diescripkion
Sensitive Column Type UNDEFINED (=]

* Redaction Function REGEX [+

Regular Expression Based Redaction. Specifies a reqular expression that represents the
columin data that will be redacted.

Function Attributes
* Pattern

Specifies the reqular expression pattern to be searched.
Example: "did\ddvdyd675" For number like '012345678"

* Replace Skring

Example: Use "Wxxxxit3' (replace string) to redact '012345678" (actual walue) which matches
Tididid) Odvdd) Qi d) (regexp patkern) to WXKKEKETE' (redacted walue),

Moke that the 43" in the replace string preserves the ackual data in the third set of parentheses
in the pattarn.

* Position 1

Specifies the starting position of the string search, The defadlt is 1, meaning it begins the
search from the first character of column data.

*Occurrence

Specifies how to perform the search and replace operation, Zero means it replaces all
occurrences, Positive integer 'n' would replace nth occurrence of the string.

Makch Parameber Ignore case -

Specifies the matching parameters For the REGEY redaction Function,

oK Cancel

7. Provide a name and a description for the redaction format that you want to create.

If you want to map the redaction format to a particular sensitive column type (such
that the created redaction format can be used to redact the data of a column that is
associated with the sensitive column type), then select a value for Sensitive
Column Type.

Select the function that the format should use to redact the column data. For
Redaction Function, select FULL if the format should redact the entire column
data, PARTIAL if the format should redact only a part of the column data, REGEX
if the format should redact data based on a regular expression, RANDOM if the
format should redact data in a random manner, using randomly generated values,
or NONE if the format will be used to only test the definition of a redaction policy,
and not redact any column data. If you select PARTIAL, then ensure that you
provide the function attributes, as well as the data type that you want to use the
redaction format for. If you select REGEX, ensure that you provide the function
attributes.

For more information about the redaction functions you can use, and the patterns
you can specify with each redaction function, see Oracle Data Redaction Features
and Capabilities (page 9-1).

11-6 Oracle Database Advanced Security Guide

Managing Oracle Data Redaction Formats Using Enterprise Manager

8.

Click OK to create and save the custom redaction format.

This format can now be used to create a redaction policy. For information about
how to create a redaction policy, see Creating an Oracle Data Redaction Policy
Using Enterprise Manager (page 11-10).

11.4.3 Editing a Custom Oracle Data Redaction Format

You can edit custom Oracle Data Redaction formats using Enterprise Manager Cloud
Control, but not in SQL*Plus.

1.

8.

9.

Log into Oracle Enterprise Manager Cloud Control as either user SYSTEMor
SYSMVAN

The URL is as follows:

https://host:port/em

From the Targets menu, select Databases.

Select Search List, then click the name of a database target.

On the home page of the database target, from the Security menu, select Data
Redaction.

Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBM5_REDACT PL/SQL package.

Select the Formats tab.
Select the custom redaction format that you want to edit, and then click Edit.

A dialog box similar to the following appears:

Edit *
* Format Mame American Express Credit Card Mumbers - Full
* Descriphion Redact the American Express Credi
Sensitive Column Type CREDIT_CARD_MUMBER =l

* Redackion Funchion FULL [=]

Full Redaction. Redact all the contents of the column data. The redacted value returned to
the querving user depends on the data bype of the column, For example, columns of the
MUMBER. data bype are redacted with a zero (0) and character data bypes are redacted with a
blank space. These default values can be changed if necessary,

oK Cancel

(Optional) Choose to edit the format description, sensitive column type, redaction
function, and the redaction function attributes.

Click OK to save the edited format.

11.4.4 Viewing Oracle Data Redaction Formats

Enterprise Manager Cloud Control displays the details of the Oracle-supplied and
custom Oracle Data Redaction formats.

Using Oracle Data Redaction in Oracle Enterprise Manager 11-7

Managing Oracle Data Redaction Formats Using Enterprise Manager

1. Loginto Oracle Enterprise Manager Cloud Control as either user SYSTEMor

SYSMAN.
The URL is as follows:

https://host:port/em

2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target.

4. On the home page of the database target, from the Security menu, select Data

Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBMS_REDACT PL/SQL package.

6. Select the Formats tab.

7. Select the required redaction format, then click View.

The Data Redaction Formats page appears, similar to the following page.

Data Redaction

Folicies Formats

Create

Eormat Name ?EI‘\SIUVE Calumn

vpe
American Express ... CREDIT_CARD_MNU... PARTIAL
American Express Cre CREDIT_CARD_MUMEPARTIAL
American Express ... CREDIT_CARD_NU... REGEX

American Express Cre CREDIT_CARD _MNUME RANDOM
Canadian Social In... S0CIAL_IMSURAN.. PARTIAL
Canadian Social Insur SOCIAL_IMSURANCE PARTIAL
Canadian Social In... SOCIAL_IMSURAN... RANDOM
Canadian Social Insur SOCIAL_IMSURANCE PARTIAL
Credit Card Mumbe... CREDIT_CARD_NU... PARTIAL
Credit Card Mumbers CREDIT_CARD_NUME PARTIAL
Credit Card Mumbe... CREDIT_CARD_MU... REGE:R

Credit Card Mumbers CREDIT_CARD _NUMERANDOM

Function Type

Date ko Epoch UNDEFIMED PARTIAL
Date to Milennium UNDEFINED PARTIAL
Email Addresses EMAIL_ID REGEX
IP Addresses IP_ADDRESS REGEX

Morth American Ph... PHOME_NUMEER REGEX
Morth American Phore PHONE_NUMBER. PARTIAL

% Oracle Database v Performance v Avallability v Security + Schema » Administration +

Page Refreshed Oct 27, 2014 11:22:08 AM PDT Cy

Cracle Data Redaction provides an easy way to quickly redact sensitive information that is displayed in applications without alkering the underlying database blocks on disk or in cache, -
Data is redacted in real-time according to Aexible multi-factar policies. Data Redaction is licensed as part of Oracle Advanced Security.

Create Like / Edit &d View 3§ Delste GE Refresh @3 Manage Sensitive Column Types

Description

Redact the American Express Credit Card Number by replacing all the digits with * except the last 5 digits, For ex...
Redact the American Express Credit Card Nurber by replacing all the digits with 0 except the last S digits

Redact the American Express Credit Card Number by replacing all digits with * except the last 5 digits

Redact the American Express Credit Card Number by replacing all digits with random digits

Redact the Canadian Social Insurance Mumber by replacing the first & digits by "%" {string), For example, "123-45...
Redact the Canadian Social Insurance number by replacing the first 6 digits by "3" {number). For example, "1234567
Redact the Canadian Social Insurance Mumber by replacing all digits with randam digits

Redact the Canadian Social Insurance number by replacing the first 6 digits by "%" {string). For example, "12345678
Redact the Credit Card Mumber by replacing everything but the last 4 digits by ™", For example, the credit card
Redact the Credit Card Mumber by replacing everything but the last 4 digits by "0, For example, the credit card nur
Redact the Credit Card Mumber by replacing everything but the last 4 digits by ™", For example, the credit card
Redact the Credit Card Number by replacing all digits with random digits

Redacts all dates to Jan Lst, 1970

Redacts all dates to Jan 1st, 2000

Redact the Email address by replacing the username with oo, For instance, user@oracle.com gets redacted t
Redact the IP address by replacing the machine/last quadrant of the IP address by "999" {number)

Redact the Morth American Phone Mumber by leaving the area code, but replacing everything else with X", For e
Redact the Morth American Phone Mumber by leaving the area code, but replacing everything elss with "0", For exa

m

11.4.5 Deleting a Custom Oracle Data Redaction Format

You can delete a custom Oracle Data Redaction format using Enterprise Manager

Cloud Control (Cloud Control).

You can only delete custom Oracle Data Redaction formats, and not the redaction
formats that are provided by Oracle.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEMor

SYSMVAN.
The URL is as follows:

https://host: port/em

2. From the Targets menu, select Databases.

11-8 Oracle Database Advanced Security Guide

Managing Oracle Data Redaction Policies Using Enterprise Manager

3. Select Search List, then click the name of a database target.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBMS_REDACT PL/SQL package.

6. Select the Formats tab.
7. Select the custom redaction format that you want to delete, and then click Delete.

8. In the Confirmation dialog box, click Yes or No.

11.5 Managing Oracle Data Redaction Policies Using Enterprise Manager

You can create, edit, view, and delete Oracle Data Redaction policies in Enterprise
Manager Cloud Control (Cloud Control).

Topics:
¢ Creating an Oracle Data Redaction Policy Using Enterprise Manager (page 11-10)
e Editing an Oracle Data Redaction Policy Using Enterprise Manager (page 11-13)

* Viewing Oracle Data Redaction Policy Details Using Enterprise Manager
(page 11-14)

* Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager
(page 11-15)

® Deleting an Oracle Data Redaction Policy Using Enterprise Manager (page 11-16)

11.5.1 About Managing Oracle Data Redaction Policies Using Enterprise Manager

Use the Data Redaction page in Cloud Control to manage Oracle Data Redaction
policies.

To redact the data present in a particular database table or view column, you must
create an Oracle Data Redaction policy. Data is redacted using a redaction format that
is specified by the Oracle Data Redaction policy. To redact data, you can use any of the
Oracle-supplied redaction formats, or create and use a custom redaction format. If the
table or view column that contains the data that you want to redact is mapped to a
sensitive column type, Oracle uses the mapping to recommend suitable redaction
formats for the data. Thus, Oracle Data Redaction policies encapsulate database
schemas, database table and view columns, sensitive column types, and Oracle Data
Redaction formats.

Figure 11-4 (page 11-10) shows the Data Redaction page, which enables you to create
and manage Oracle Data Redaction policies in Cloud Control.

Using Oracle Data Redaction in Oracle Enterprise Manager 11-9

Managing Oracle Data Redaction Policies Using Enterprise Manager

Figure 11-4 Oracle Data Redaction Policies Page

abc example com @
[@ Orade Database v Performance » Availsbiity » Security » Schema v Administration ¥

Data Redaction
Orade Data Redaction provides an easy way to quickly redact sensitive information that is displayed in applications without altering the underlying database blocks on disk or in cache.
Policies ~ Formats
Search Data Redaction Policies

Schema %
Table/view %
Policy Name | %

Go

Policies

Create / Edit & View () Enable (Q) Disable Delete

Schema Table View Policy Name Enabled Redacted Columns
APEX_040200 WWV_FLOW_POP... test_palicy_1 Q 1

NRSMMP MGEMT RSIN MFTRTC test nalicw 2 @ 1

11.5.2 Creating an Oracle Data Redaction Policy Using Enterprise Manager

You can create an Oracle Data Redaction policy using Enterprise Manager Cloud
Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEMor
SYSNMAN.

The URL is as follows:
https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target for which you want to
create an Oracle Data Redaction policy.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBMS_REDACT PL/SQL package.

6. In the Policies section of the Policies tab, select Create.
7. On the Create Data Redaction Policy page, enter the following information:

e Schema: Enter (or search for) the name of the schema that contains the data
you want to redact.

e Table/View: Enter (or search for) the table or field that contains the column
you want to redact.

¢ Policy Name: Enter a for the policy, such as enp_wages_pol .

¢ Policy Expression: Enter a policy expression. The default is 1=1, which means
that the policy always will be enforced. If you are not familiar with the
components of a policy expression, click the pencil icon beside the Policy
Expression field to use Policy Expression Builder. Select Policy is in effect

11-10 Oracle Database Advanced Security Guide

Managing Oracle Data Redaction Policies Using Enterprise Manager

when, select the required conditions, then click Add. Click Edit if you want to
edit the policy expression manually. After building the required policy
expression, click OK. The Policy Expression Builder appears as follows:

Policy Expression

Policy Expression Builder *

() Palicy is in effect when session user

Cracle Database Environment EI 4{.5 Add

is not SCOTT

Edit: Manually

[C1Edit

Ok Canicel

redaction policy.

8. In the Object Columns section, click Add to add a table or view column to the

The following dialog box appears:

Add

* Column
Column Datatype

Sensitive Column Type
Redaction Format

* Redaction Function

Function Attributes

* Pattern

* Replace String

* Position

* Orccurrence

Match Parameter

®
[~

Undefined [+

Custom El

REGEX [=|

Regular Expression Based Redaction. Specifies a regular expression that represents the
colunin data that will be redacted.

Specifies the regular expression pattern to be searched.
Example: "dydidvdydida?a' for number like '012345678"

Example: Use %o0ood3' (replace string) to redact '012345678' {ackual walue) which matches
Tdidd) (dvdid) (didid)’ (reqexp patkern) to WEKKNKETE' (redacted walue).

Mote that the 3" in the replace string preserves the actual data in the third set of parentheses
in the pattern,

1

Specifies the starting position of the string search, The defaulk is 1, meaning it begins the
search from the first character of column data,

a

Specifies how ko perfarm the search and replace operation. Zero means it replaces all
occurrences, Positive integer 'n' would replace nkh occurrence of the skring,

Ignoare case -

Specifies the matching parameters For the REGEY redaction Function,

o4 Zancel

The redaction policy is applied only on the table or view columns that are added to
it.

9. From the Column menu, select the table or view column to which you want to
apply the redaction policy.

Using Oracle Data Redaction in Oracle Enterprise Manager 11-11

Managing Oracle Data Redaction Policies Using Enterprise Manager

To the right of the Column menu is an icon that you can click to view the contents
of the selected column.

For example:

Data x

EMPLOYEE_ID

112 -
103

101

104

121 -

Cancel

If the column contains sensitive data and has been mapped to a sensitive column
type, then from the Sensitive Column Type menu, select the sensitive column type
that it has been mapped to. If the search pattern in the Sensitive Column Type
menu matches, then the sensitive column type is selected by default. For example,
for a column listing credit card numbers, if there is a match, then the menu will list
Undefined and CREDIT_CARD_TYPE. If there is no sensitive column type
created, then the default Sensitive Column Type menu listing is only Undefined.

10. From the Redaction Format menu, select the redaction format that you want to use.

The drop-down list is populated with the Oracle Database-supplied redaction
formats, as well as the custom redaction formats that you have created and saved.
For information about how to create and save a redaction format, see Creating a
Custom Oracle Data Redaction Format (page 11-5).

If you do not want to use a pre-defined redaction format (that is, an Oracle-
Database supplied redaction format, or a custom redaction format that you have
created), and instead want to specify the redaction details while creating the
redaction policy, select CUSTOM for Redaction Format.

The Add dialog box adjusts to accommodate the type of redaction format and
function that you select. For example, if you select the CUSTOM redaction format
and the REGEX redaction function, then the Function Attributes region appears in
the dialog box.

11. From the Redaction Function menu, select the function that you want to use to
redact the column data.

Select FULL if you want to redact the entire column data, PARTIAL if you want to
redact only a part of the column data, REGEX if you want to redact the column
data based on a regular expression, RANDOM if you want to redact the column
data in a random manner, using randomly generated values, or NONE if you only
want to test the definition of the redaction policy, and not redact any column data.
Note that all the redaction functions may not be applicable for a particular
redaction format. The drop-down list displays only the redaction functions that are
applicable for the selected redaction format.

If you selected CUSTOM for Redaction Format in the previous step, and
PARTIAL or REGEX for Redaction Function, ensure that you specify the function
attributes.

11-12 Oracle Database Advanced Security Guide

Managing Oracle Data Redaction Policies Using Enterprise Manager

See Oracle Data Redaction Features and Capabilities (page 9-1)for more
information and examples of the available redaction formats.

12. Click OK.

13. Repeat these steps starting with Step 8 for all the columns that you want to add to
the redaction policy.

14.On the Create Data Redaction Policy page, click OK to create the data redaction
policy.

The new policy appears, similar to the following image:

database / {# CDB1_PDB1 @ Logged in as sys (3 | 3 sicogazh,us.oracke.com
a Oracle Database > Performance * Availability ™ Security * Schema * Administration = Page Refreshed Oct 28, 2014 12:39:31 PM PDT o
Create Data Redaction Policy: emp_comm_pol Cancel Show SQL Ok
*Schema Hp Q Instructions i
* Table/view EMPLOYEES Q, 1. Create a Data Redaction policy by
. selecting the database schema and the
Paiicy emp_comm_pol table or wiew o redact and assigning the:
Hlams policy a name.
SYS_COMTEXT{USERENY', 'SESSION_USER') I=) .
'SCOTT' OR. 545_COMTEXT{USERERY, 2, Use the columns lisk below ko pick.
*Policy 'SESSION USERG 15 MULL = specific calumns to redact and bo specify
Expression - Ey their redacted Format,

3. Review and update the redaction
policy expression, This expression
defaults to 1=1 {TRLE}, meaning ko
always redact.

m

For help writing policy expressions, click
on the pencil ican to show the Policy
Expression Builder dislog, Moke that you
can join mulkiple conditions together
using logical aperators, This is useful for
creating white lists that redact sensitive
data by default and only show actual
data when exception conditions that you
specify are met,

Object Columns

& Wadfy 38 Remave

Column Column Datatype Redaction Function Function Attributes
COMMISSION_PCT - MUMBER RANDOM
EMPLOYEE_ID MUMEBER. FULL

Note:

When you create an Oracle Data Redaction policy, it is enabled by default. For
information on how to disable an enabled redaction policy, see Enabling or
Disabling an Oracle Data Redaction Policy in Enterprise Manager

(page 11-15).

11.5.3 Editing an Oracle Data Redaction Policy Using Enterprise Manager

You can edit an Oracle Data Redaction policy using Enterprise Manager Cloud
Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEMor
SYSMAN.

The URL is as follows:

https://host: port/em

Using Oracle Data Redaction in Oracle Enterprise Manager 11-13

Managing Oracle Data Redaction Policies Using Enterprise Manager

2. From the Targets menu, select Databases.

3. Select Search List, then search for and click the name of the database target for
which the Oracle Data Redaction policy that you want to edit was created.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBMS_REDACT PL/SQL package.

6. In the Policies section of the Policies tab, select the redaction policy that you want
to edit, then click Edit..

Data Redaction

Oracle Data Redaction provides an easy way to quickly redact sensitive information that is displayed in applications without altering the underlying database blacks on disk or in cache.
Datais redacted in real-time according ta Flexible multi-Factor policies. Data Redaction is licensed as part of Oracle Advanced Security,

Policies ~ Formats
Search Data Redaction Policies
Schema %
Table/View %
Policy Mame %%

Go

Policies

Create APEdt A liew () Enable (@ Disable 3§ Deletz
Schema Table/View Policy Name Enabled Redacted Columns
HR EMPLOVEES emp_comm_pal Q@ H

7. On the Edit Data Redaction Policy page, choose to edit the policy expression, add
new columns to the redaction policy, modify the redaction details of a column that
is a part of the policy, or delete a column from the redaction policy.

You can do the following:

¢ Toadd a new column to the redaction policy, in the Object Columns section,
click Add, select the table or view column that you want to add, then specify
the redaction details.

* To modify the redaction details of a column that is a part of the policy, select
the column, click Modify, then edit the redaction details.

e To delete a column from the redaction policy, select the column, then click
Delete.

For information about how to specify or edit the policy expression, see Step 6
described in Creating an Oracle Data Redaction Policy Using Enterprise Manager
(page 11-10). For information about how to specify or edit the redaction details of a
column, see Step 7.

8. On the Edit Data Redaction Policy page, after editing the required fields, click OK
to save and enable the edited redaction policy.

11.5.4 Viewing Oracle Data Redaction Policy Details Using Enterprise Manager

You can find Oracle Data Redaction policy details such as whether the policy is
enabled by using Enterprise Manager Cloud Control.

11-14 Oracle Database Advanced Security Guide

Managing Oracle Data Redaction Policies Using Enterprise Manager

You can disable an enabled redaction policy, or enable a disabled redaction policy
using Enterprise Manager Cloud Control (Cloud Control).

1.

Log into Oracle Enterprise Manager Cloud Control as either user SYSTEMor
SYSVAN.

The URL is as follows:
https://host:port/em
From the Targets menu, select Databases.

Select Search List, then search for and click the name of the database target for
which the Oracle Data Redaction policy that you want to view was created.

On the home page of the database target, from the Security menu, select Data
Redaction.

Log in to the database, if you are prompted to do so.
In the Policies section of the Policies tab, do one of the following;:
¢ Select the name of the policy in the table.

* Select the required redaction policy, then click View.

11.5.5 Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager

An Oracle Data Redaction policy is executed at run time only if it is enabled. When
you create an Oracle Data Redaction policy, it is enabled by default.

You can disable an enabled redaction policy, or enable a disabled redaction policy
using Enterprise Manager Cloud Control (Cloud Control).

1.

Log into Oracle Enterprise Manager Cloud Control as either user SYSTEMor
SYSNMVAN.

The URL is as follows:
https://host:port/em
From the Targets menu, select Databases.

Select Search List, then search for and click the name of the database target for
which the Oracle Data Redaction policy that you want to enable or disable was
created.

On the home page of the database target, from the Security menu, select Data
Redaction.

Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBM5_REDACT PL/SQL package.

In the Policies section of the Policies tab, select the redaction policy that you want
to enable or disable, and then click Enable or Disable.

Using Oracle Data Redaction in Oracle Enterprise Manager 11-15

Managing Oracle Data Redaction Policies Using Enterprise Manager

7.

Policies

Create /Edit &dYiew () Enable (@) Disable 3§ Delete

Schema Tableiew Policy Mame Enabled Redacted Columns
HR EMPLOYEES emp_comm_pal 2 z

In the Confirmation dialog box, click Yes or No.

11.5.6 Deleting an Oracle Data Redaction Policy Using Enterprise Manager

You can delete an Oracle Data Redaction policy using Enterprise Manager Cloud
Control.

1.

Log into Oracle Enterprise Manager Cloud Control as either user SYSTEMor
SYSVAN

The URL is as follows:
https://host:port/em
From the Targets menu, select Databases.

Select Search List, then search for and click the name of the database target for
which the Oracle Data Redaction policy that you want to delete was created.

On the home page of the database target, from the Security menu, select Data
Redaction.

Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBM5_REDACT PL/SQL package.

In the Policies section of the Policies tab, select the redaction policy that you want
to delete, and then click Delete.

In the Confirmation dialog box, click Yes or No.

11-16 Oracle Database Advanced Security Guide

12

Oracle Data Redaction Use with Oracle

Database Features

Oracle Data Redaction can be used with other Oracle features. Some Oracle features
may have restrictions with regard to Oracle Data Redaction.

Topics:

Oracle Data Redaction and DML and DDL Operations (page 12-1)

Oracle Data Redaction and Nested Functions, Inline Views, and the WHERE
Clause (page 12-2)

Oracle Data Redaction and Database Links (page 12-2)

Oracle Data Redaction and Aggregate Functions (page 12-2)

Oracle Data Redaction and Object Types (page 12-3)

Oracle Data Redaction and XML Generation (page 12-3)

Oracle Data Redaction and Editions (page 12-3)

Oracle Data Redaction in a Multitenant Environment (page 12-3)
Oracle Data Redaction and Oracle Virtual Private Database (page 12-3)

Oracle Data Redaction and Oracle Database Real Application Security
(page 12-4)

Oracle Data Redaction and Oracle Database Vault (page 12-4)
Oracle Data Redaction and Oracle Data Pump (page 12-4)

Oracle Data Redaction and Data Masking and Subsetting Pack (page 12-7)

12.1 Oracle Data Redaction and DML and DDL Operations

Oracle Data Redaction affects DML and DDL operations, especially for users who
issue ad-hoc SQL against tables with redacted columns.

Note the following:

Oracle Data Redaction treats the RETURNI NG | NTOclause of a DML statement as
a query, even though the result is not displayed. The result that is sent to the
buffer is what would have been displayed had the RETURNI NG | NTOclause been
run as an ordinary SQL query, rather than as part of a DML statement. If your
application performs further processing on the buffer that contains the

RETURNI NG | NTOvalue, then consider changing the application because it may
not expect to find a redacted value in the buffer.

Oracle Data Redaction Use with Oracle Database Features 12-1

Oracle Data Redaction and Nested Functions, Inline Views, and the WHERE Clause

If a redacted column appears as the source in a DML or DDL operation, then
Oracle Data Redaction considers this as an attempt to circumvent the policy and
prevents it with an ORA- 28081: I nsufficient privileges - the
command references a redacted object error unless you have the
EXEMPT REDACTI ON PCLI CY system privilege. Internally, Oracle Data Pump
issues these kinds of operations, so you may also need to grant the EXEMPT
REDACTI ON PCLI CY system privilege to a user if they need to perform schema-
level exports of tables that have redacted columns.

12.2 Oracle Data Redaction and Nested Functions, Inline Views, and the

WHERE Clause

You can use Oracle Data Redaction with nested functions, inline views, and the WHERE
clause in SELECT statements.

Oracle Data Redaction policies work as follows:

Nested functions are redacted innermost. For example, in SELECT

SUM AVG TO NUMBER(((X))) FROM HR EMPLOYEES WHERE .. ., the
TO_NUMBER function is redacted first, followed by AVG, and then last the SUM
function.

Inline views are redacted outermost. For example, in SELECT XYZ ... AS
SELECT A...AS SELECT B...AS SELECT C..,SELECT XYZ is redacted first,
followed by AS SELECT A, then AS SELECT B, and so on. AS SELECT Cis
redacted last.

The WHERE clause is never redacted. Data Redaction redacts only data in the
column SELECT list.

12.3 Oracle Data Redaction and Database Links

Do not create Oracle Data Redaction policies on database views that reference
database links.

You can find information about existing database links by querying the
DBA_DB_LI NKS data dictionary view.

See Also:

Oracle Database Administrator’s Guide for detailed information about database
links

12.4 Oracle Data Redaction and Aggregate Functions

Aggregate functions can affect performance overhead on Oracle Data Redaction
policies.

Because Oracle Data Redaction dynamically modifies the value of each row in a
column, certain SQL queries that use aggregate functions cannot take full advantage of
database optimizations that presume the row values to be static.

In the case of SQL queries that call aggregate functions, it may be possible to notice
performance overhead due to redaction.

12-2 Oracle Database Advanced Security Guide

Oracle Data Redaction and Object Types

12.5 Oracle Data Redaction and Object Types

You can use object types to model real-world entities such as customer accounts.

An object type is a user-defined type. You cannot redact object types. This is because
Database Redaction cannot handle all of the possible ways that object types can be
configured, because they are user defined. You can find the type that an object uses by
querying the OBJECT_NAME and OBJECT_TYPE columns of the ALL_OBJECTS data
dictionary view.

12.6 Oracle Data Redaction and XML Generation

You cannot use XML generation functions on columns that have Oracle Data
Redaction policies defined on them.

Oracle XML DB Developer’s Guide describes the kinds of SQL functions to which this
restriction applies. This restriction applies irrespective of whether the Oracle Data
Redaction policy has been enabled or disabled, or is active for the querying user.

12.7 Oracle Data Redaction and Editions

You cannot redact editioned views.

In addition to not being able to redact editioned views, you cannot use a redacted
column in the definition of any editioned view. You can find information about
editions by querying the DBA_EDI Tl ONS data dictionary view.

12.8 Oracle Data Redaction in a Multitenant Environment

In a multitenant environment, Oracle Data Redaction policies apply only to the objects
within the current pluggable database (PDB).

You cannot create a Data Redaction policy for a multitenant container database (CDB).
This is because the objects for which you create Data Redaction policies typically
reside in a PDB. You can find all the PDBs in a CDB by querying the DBA PDBS data
dictionary view.

12.9 Oracle Data Redaction and Oracle Virtual Private Database

Oracle Data Redaction does not affect Oracle Virtual Private Database policies because
the VPD inline view, which contains the VPD predicate, acts on actual values.

Oracle Data Redaction differs from Oracle Virtual Private Database in the following
ways:

¢ Oracle Data Redaction provides more redacting features than Oracle Virtual
Private Database, which only supports NULL redacting. Many applications cannot
use NULL redacting, so Data Redaction is a good solution for these applications.

® Oracle Virtual Private Database policies can be static, dynamic, and context
sensitive, whereas Data Redaction policies only allow static and context-sensitive
policy expressions.

¢ Data Redaction permits only one policy to be defined on a table or view, whereas
you can define multiple Virtual Private Database policies on an object.

e Data Redaction is when application users try to access an object that is protected
by a Data Redaction policy using a synonym, but (unlike Oracle Virtual Private

Oracle Data Redaction Use with Oracle Database Features 12-3

Oracle Data Redaction and Oracle Database Real Application Security

Database) Data Redaction does not support the creation of policies directly on the
synonyms themselves.

12.10 Oracle Data Redaction and Oracle Database Real Application
Security

Oracle Data Redaction differs from Oracle Database Real Application Security because
of how security is implemented for applications.

Oracle Data Redaction differs from Oracle Database Real Application Security in that
Real Application Security provides a comprehensive authorization framework for
application security.

Column security within Real Application Security is based on application privileges
that are defined by applications using the Real Application Security framework.

See Also:

Oracle Database Real Application Security Administrator’s and Developer’s Guide
for information about how you can protect table columns with custom
application privileges

12.11 Oracle Data Redaction and Oracle Database Vault

You can use Oracle Data Redaction in an Oracle Database Vault environment.

For example, if there is an Oracle Database Vault realm around an object, a user who
does not belong to the authorized list of realm owners or participants cannot see the
object data, regardless of whether the user was granted the EXEMPT REDACTI ON
PCLI CY privilege. If the user attempts a DML or DDL statement on the data, error
messages result.

12.12 Oracle Data Redaction and Oracle Data Pump

When you use Oracle Data Redaction with Oracle Data Pump, you must consider the
impact the DATAPUVMP_EXP_FULL_DATABASE role has, the ramifications of exporting
objects that contain Data Redaction policies, and exporting data using the EXPDP
access_net hod parameter.

Topics:

® Oracle Data Pump Security Model for Oracle Data Redaction (page 12-4)

* Export of Objects That Have Oracle Data Redaction Policies Defined (page 12-5)
e Export of Data Using the EXPDP Utility access_method Parameter (page 12-6)

¢ Import of Data into Objects Protected by Oracle Data Redaction (page 12-7)

12.12.1 Oracle Data Pump Security Model for Oracle Data Redaction

The DATAPUMP_EXP_FULL_DATABASE role includes the powerful EXEMPT
REDACTI ON PCLI CY system privilege.

Remember that by default the DBArole is granted the
DATAPUMP_EXP_FULL_DATABASE role as well as DATAPUMP_| MP_FULL_DATABASE.

12-4 Oracle Database Advanced Security Guide

Oracle Data Redaction and Oracle Data Pump

This enables users who were granted these roles to be exempt from Data Redaction
policies. This means that, when you export objects with Data Redaction policies
defined on them, the actual data in the protected tables is copied to the Data Pump
target system without being redacted. Users with these roles, including users who
were granted the DBArole, are able to see the actual data in the target system.

However, by default, all of the Data Redaction policies associated with any tables and
views in the Data Pump source system are also included in the export and import
operation (along with the objects themselves) and applied to the objects in the target
system, so the data is still redacted when users query the objects in the target system.

See Also:

Exemption of Users from Oracle Data Redaction Policies (page 10-30)

12.12.2 Export of Objects That Have Oracle Data Redaction Policies Defined

You can export objects that have already had Oracle Data Redaction policies defined
on them.

Topics:
¢ Finding Type Names Used by Oracle Data Pump (page 12-5)

e Exporting Only the Data Dictionary Metadata Related to Data Redaction Policies
(page 12-5)

¢ Importing Objects Using the INCLUDE Parameter in IMPDP (page 12-6)

12.12.2.1 Finding Type Names Used by Oracle Data Pump

You must find the type names Oracle Data Pump uses before exporting objects that
have Oracle Data Redaction policies defined on these objects.

After you find these types, you should use these types as parameters for the | NCLUDE
directive to the | MPDP utility, to selectively export only metadata of these specific
types to the dump file.

¢ To find type names, query the DATABASE_EXPORT_OBJECTS view.
For example:

SELECT OBJECT_PATH
FROM DATABASE_EXPCRT_OBJECTS
VWHERE OBJECT_PATH LI KE ' RADM % ;

Output similar to the following appears:

OBJECT_PATH

RADM FPTM
RADM POLI CY

12.12.2.2 Exporting Only the Data Dictionary Metadata Related to Data Redaction
Policies

You can export only the data dictionary metadata that is related to data redaction
policies and full redaction settings.

Oracle Data Redaction Use with Oracle Database Features 12-5

Oracle Data Redaction and Oracle Data Pump

This kind of Data Pump export could, for example, be used if you must use the same
set of Data Redaction policies and settings across development, test, and production
databases. Because the flag cont ent =net adat a_onl y is specified, the dump file
does not contain any actual data.

* Toexport only the data dictionary metadata related to data redaction policies and
full redaction settings, enter an EXPDP utility command similar to the following:

expdp systen password \

full=y \

COVPRESSI ON=NONE \

content=netadata_only \

| NCLUDE=RADM FPTM RADM PCLI C1\
directory=ny_directory \

j ob_name=ny_j ob_nane \

dunpfil e=ny_data_redaction_policy_metadata.dnp

See Also:

e Oracle Database Utilities for detailed information about the | NCLUDE
parameter of the EXPDP utility

e Oracle Database Utilities for detailed information about metadata filters

12.12.2.3 Importing Objects Using the INCLUDE Parameter in IMPDP

You can import objects using Oracle Database Pump.

¢ Toimport the objects, include these names in the | NCLUDE parameter in the
| MPDP utility command, based on the output from querying the OBJECT_PATH
column in the DATABASE_EXPORT_OBJECTS view.

12.12.3 Export of Data Using the EXPDP Utility access_method Parameter

Oracle Data Pump can export data from a schema that contains an object that has a
Data Redaction policy.

If you are using Oracle Data Pump to perform full database export operations using
the Data Pump default settings (di r ect _pat h), and if you receive error messages
that you do not understand, then use this section to repeat the operation in such a way
as to better understand the error.

If you try to use the Oracle Data Pump Export (EXPDP) utility with the

access_net hod parameter set to di r ect _pat h to export data from a schema that
contains an object that has a Data Redaction policy defined on it, then the following
error message may appear and the export operation fails:

ORA-31696: unable to export/inport TABLE DATA: "schema.tabl e" using client specified
DI RECT_PATH net hod

This problem only occurs when you perform a schema-level export as a user who was
not granted the EXP_FULL_DATABASE role. It does not occur during a full database
export, which requires the EXP_FULL_DATABASE role. The EXP_FULL_DATABASE
role includes the EXEMPT REDACTI ON POLI CY system privilege, which bypasses
Data Redaction policies.

To find the underlying problem, try the EXPDP invocation again, but do not set the
access_net hod parameter to di r ect _pat h. Instead, use either aut omat i c or

12-6 Oracle Database Advanced Security Guide

Oracle Data Redaction and Data Masking and Subsetting Pack

ext er nal _t abl e. The underlying problem could be a permissions problem, for
example:

ORA-28081: Insufficient privileges - the command references a redacted object.

See Also:

Oracle Database Ultilities for more information about using Data Pump Export.

12.12.4 Import of Data into Objects Protected by Oracle Data Redaction

During an import operation, be careful that you do not inadvertently drop data
redaction policies that protect imported data.

Consider a scenario in which the source tables that were exported using the Oracle
Data Pump Export (EXPDP) utility do not have Oracle Data Redaction polices.
However, the destination tables to which the data is to be imported by using Oracle
Data Pump Import (I MPDP) have Oracle Data Redaction policies.

During the Data Pump import operation, the status of the Data Redaction policies on
the objects being imported depends on the CONTENT option of | MPDP command.

¢ If you use the CONTENT=ALL or CONTENT=METADATA_QONLY option in the | MPDP
command, then the Data Redaction policies on the destination tables are dropped.
You must recreate the Data Redaction policies.

e If you use CONTENT=DATA_ONLY in the | MPDP command, then the Data
Redaction polices on the destination tables are not dropped.

See Also:

Oracle Database Utilities for more information about using Data Pump Export

12.13 Oracle Data Redaction and Data Masking and Subsetting Pack

Oracle Enterprise Manager Data Masking and Subsetting Pack can be used to create a
development or test copy of a production database.

To accomplish this, you can mask this data in bulk, and then put the resulting masked
data in the development or test copy.

You can still apply Data Redaction policies to the non-production database, in order to
redact columns that contain data that was already masked by Oracle Enterprise
Manager Data Masking and Subsetting Pack.

Remember that Oracle Enterprise Manager Data Masking and Subsetting Pack is used
to mask data sets when you want to move the data to development and test
environments. Data Redaction is mainly designed for redacting at runtime for
production applications in a consistent fashion across multiple applications, without
having to make application code changes.

Oracle Data Redaction Use with Oracle Database Features 12-7

Oracle Data Redaction and Data Masking and Subsetting Pack

See Also:

Oracle Data Masking and Subsetting Guide for more information about data
masking and subsetting

12-8 Oracle Database Advanced Security Guide

13

Security Considerations for Oracle Data

Redaction

Oracle provides a set of guidelines for using Oracle Data Redaction.

Topics:

Oracle Data Redaction General Usage Guidelines (page 13-1)

Restriction of Administrative Access to Oracle Data Redaction Policies
(page 13-2)

How Oracle Data Redaction Affects the SYS, SYSTEM, and Default Schemas
(page 13-2)

Policy Expressions That Use SYS_CONTEXT Attributes (page 13-3)
Oracle Data Redaction Policies on Materialized Views (page 13-3)

Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled
(page 13-3)

13.1 Oracle Data Redaction General Usage Guidelines

It is important to understand general guidelines for using Oracle Data Redaction.

Oracle Data Redaction is not intended to protect against attacks by regular and
privileged database users who run ad hoc queries directly against the database.

Oracle Data Redaction is not intended to protect against users who run ad hoc
SQL queries that attempt to determine the actual values by inference.

Oracle Data Redaction relies on the database and application context values. For
applications, it is the responsibility of the application to properly initialize the
context value.

Oracle Data Redaction is not enforced for users who are logged in using the
SYSDBA administrative privilege.

Certain DDL statements that attempt to copy the actual data out from under the
control of a data redaction policy (that is, CREATE TABLE AS SELECT, | NSERT
AS SELECT) are blocked by default, but you can disable this behavior by granting
the user the EXEMPT REDACTI ON PQLI CY system privilege.

Oracle Data Redaction does not affect day-to-day database operations, such as
backup and recovery, Oracle Data Pump exports and imports, Oracle Data Guard
operations, and replication.

Do not include any redacted columns in a SQL expression that is used in a GROUP
BY clause in a SQL statement. Oracle does not support this behavior, and raises an

Security Considerations for Oracle Data Redaction 13-1

Restriction of Administrative Access to Oracle Data Redaction Policies

ORA-00979: not a GROUP BY expressi on error. This happens because
internally the expression in the SELECT list must be modified by Data Redaction,
but this causes it to no longer be found when it comes time to process the GROUP
BY clause (which is currently not updated by Data Redaction) leading to this
unintended error message.

13.2 Restriction of Administrative Access to Oracle Data Redaction
Policies

You can restrict the list of users who can create, view and edit Data Redaction policies.

To accomplish this, you can limit who has the EXECUTE privilege on the
DBM5_REDACT package and by limiting who has the SELECT privilege on the
REDACTI ON_POLI Cl ES and REDACTI ON_COLUWNS views.

You also can restrict who is exempted from redaction by limiting the EXEMPT
REDACTI ON PQLI CY privilege. If you use Oracle Database Vault to restrict privileged
user access, then you can use realms to restrict granting of EXEMPT REDACTI ON

POLI CY.

See Also:
e Exemption of Users from Oracle Data Redaction Policies (page 10-30)
* Oracle Data Redaction and Oracle Database Vault (page 12-4)

e Oracle Database Vault Administrator’s Guide for more information about
Oracle Database Vault

13.3 How Oracle Data Redaction Affects the SYS, SYSTEM, and Default

Schemas
Both users SYS and SYSTEMautomatically have the EXEMPT REDACTI ON POLI CY
system privilege.
SYSTEMhas the EXP_FULL_DATABASE role, which includes the EXEMPT REDACTI ON
POLI CY system privilege.

This means that the SYS and SYSTEMusers can always bypass any existing Oracle
Data Redaction policies, and will always be able to view data from tables (or views)
that have Data Redaction policies defined on them.

Follow these guidelines:

* Do not create Data Redaction policies on the default Oracle Database schemas,
including the SYS and SYSTEMschemas.

¢ Be aware that granting the EXEMPT DATA REDACTI ONsystem privilege to
additional roles may enable users to bypass Oracle Data Redaction, because the
grantee role may have been granted to additional roles.

* Do not revoke the EXEMPT DATA REDACTI ONsystem privilege from the roles
that it was granted to by default.

13-2 Oracle Database Advanced Security Guide

Policy Expressions That Use SYS_CONTEXT Attributes

13.4 Policy Expressions That Use SYS_CONTEXT Attributes

Be careful when writing a policy expression that depends on a SYS_CONTEXT
attribute that is populated by an application.

The application might not always populate that attribute.

If the user somehow connects directly (rather than through the application), then the
SYS_CONTEXT attribute would not have been populated. If you do not handle this
NULL scenario in your policy expression, you could unintentionally reveal actual data
to the querying user.

For example, suppose you wanted to create a policy expression that intends to redact
the query results for everyone except users who have the client identifier value of
SUPERVI SOR. The following expression unintentionally enables querying users who
have NULL as the value for their CLI ENT_| DENTI FI ER to see the real data:

SYS_CONTEXT(' USERENV' , ' CLI ENT_| DENTIFIER) IS NOT ' SUPERVI SOR

A more rigorous policy expression redacts the result of the query if the client identifier
is not set, that is, it has a NULL value.
SYS_CONTEXT(' USERENV', ' CLIENT_IDENTIFIER) 1S NOT ' SUPERVISOR OR IS NULL

Remember that in SQL, comparisons with NULL are undefined, and are thus FALSE,
but redaction only takes place when the policy expression evaluates to TRUE.

13.5 Oracle Data Redaction Policies on Materialized Views

You can create Oracle Data Redaction policies on materialized views and on their base
tables.

However, ensure that the creator of the materialized view, or the user who performs
the refresh of the materialized view, is not blocked by any Data Redaction policies. In
other words, the user performing the materialized view creation or refresh operations
should be exempt from the Data Redaction policy. As a best practice, when you create
a new materalized view, treat it as a copy of the actual table, and then create a separate
Data Redaction policy to protect it.

13.6 Dropped Oracle Data Redaction Policies When the Recycle Bin Is

Enabled

You should check if the recycle bin is enabled before you drop Oracle Data Redaction
policies.

If you drop a table or view that has an Oracle Data Redaction policy defined on it
when the recycle bin feature is enabled, and if you query the REDACTI ON_COLUMNS or
REDACTI ON_PCLI Cl ES data dictionary views before you purge the recycle bin, then
you will see object names such as Bl N$. . . (for example, Bl N

$1Xu5PSWbVaPgQx GS5A0AEA==3$0).

This is normal behavior. These policies are removed when you purge the recycle bin.

To find if the recycle bin is enabled, you can run the SHOV PARAMETER RECYCLEBI N
command in SQL*Plus.

Security Considerations for Oracle Data Redaction 13-3

Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled

See Also:

Oracle Database Administrator’s Guide for information about purging objects
from the recycle bin

13-4 Oracle Database Advanced Security Guide

actual data

Glossary

In Oracle Data Redaction, the data in a protected table or view. An example of actual
data could be the number 123456789, and the redacted data version of this number
could be 999996789.

auto-login software keystore

cipher suite

ciphertext

A software keystore that is protected by a system-generated password and does not
need to be explicitly opened by a security administrator. Auto-login software
keystores are automatically opened when accessed and can be used on any computer
that runs an Oracle database. For example, consider an Oracle RAC environment that
has four nodes, and each node is on a different computer. This environment uses an
auto-login keystore. When a REKEY operation is performed on node 1, the auto-login
and password-based keystores must be copied to the computers that host nodes 2, 3,
and 4. In this configuration, the auto-login keystores will be opened on all four nodes
when required.

See also local auto-login software keystore.

A set of authentication, encryption, and data integrity algorithms used to exchange
messages between network nodes using Secure Sockets Layer (SSL). During an SSL
handshake, for example, the two nodes negotiate to see which cipher suite they will
use when transmitting messages back and forth.

Message text that has been encrypted.
See also encrypted text.

data redaction

The ability to mask data with different values in real time, that is, at the moment a
user tries to access the data. You can mask all of the data, a partial subset of the data,
or display random values in place of the data. It does not change the actual data in the
database.

Glossary-1

decryption

decryption
The process of converting an encrypted message (the ciphertext), back to its original
message (plaintext).

encrypted text
Text that has been encrypted, using an encryption algorithm and an encryption key;
the output stream of an encryption process. The text is not readable or decipherable,
without decrypting it first. Also called ciphertext.

encryption

The process of converting an original message (plaintext) to an encrypted message
(ciphertext).

hardware keystore

A container that stores a Transparent Data Encryption key for a hardware security
module.

hardware security module

inference

key pair

keystore

Glossary-2

A physical device that provides secure storage for encryption keys.

A query that is designed to find data by repeatedly trying queries. For example, to
find the users who earn the highest salaries, an intruder could use the following query:

SELECT FI RST_NAME, LAST_NAME, SALARY FROM HR EMPLOYEES WHERE SALARY > 16000 ORDER BY
SALARY DESC;

FI RST_NAME LAST NAME SALARY
St even Ki ng 24000
Neena Kochhar 17000
Lex De Haan 17000

A public key and its associated private key. See public and private key pair.

A general term for any container that stores encryption keys, such as Transparent Data
Encryption keys and other encrypted data. In previous releases, this container was
referred to as a wallet, which is specific to Oracle. Starting with Oracle Database 12c
release 12.1, the term changed to keystore to encompass non-Oracle Database
encryption key containers, such as hardware security modules.

See also auto-login software keystore, hardware keystore, and local auto-login
software keystore.

public and private key pair

local auto-login software keystore

A software keystore that is local and restricted to the computer on which it was
created.

See also auto-login software keystore.

mask

The ability to redact data from a user or an application.

password-based software keystore

A software keystore that must be opened with a password before it can be accessed.

See also keystore.

plaintext

Message text that has not been encrypted.

private key

In public-key cryptography, this key is the private key that is known only to its owner.
It is primarily used for encrypting message digests used with digital signatures.

See public and private key pair.

public key

One of two keys that are used in public key cryptography, the other key being the
private key. In typical public key cryptography usage, the public key is used to
encrypt data or verify digital signatures. The the private key is used to decrypt data or
generate digital signatures. The public key, unlike the private key, can be made
available to anyone whereas the private key must remain secret.

See public and private key pair.

public key encryption

The process where the sender of a message encrypts the encryption key of the
recipient. Upon delivery, the message is decrypted by the recipient using its private
key.

public and private key pair

A set of two related numbers used for encryption and decryption, where one is called
the private key and the other is called the public key. Public keys are typically made
widely available, while private keys are held by their respective owners. Data
encrypted with either a public key or a private key from a key pair can be decrypted
with its associated key from the key pair.

Glossary-3

public key infrastructure (PKI)

public key infrastructure (PKIl)

Information security technology utilizing the principles of public key cryptography.
Public key cryptography involves encrypting and decrypting information using a
shared public and private key pair. Provides for secure, private communications
within a public network.

redacted data

Masked data that is displayed to the querying user. For example, if the actual data is
3714- 4963- 5398- 4321, then the redacted data could appear, depending on the
Data Redaction policy, as XXXX- XXXX- XXXX- 4321.

salt

In cryptography, a way to strengthen the security of encrypted data. Salt is a random
string that is added to the data before it is encrypted, making it more difficult for
attackers to steal the data by matching patterns of ciphertext to known ciphertext
samples. Salt is often also added to passwords, before the passwords are hashed, to
avoid dictionary attacks, a method that attackers use to determine sensitive
passwords. The addition of salt to a password before hashing makes it more difficult
for intruders to match the hash values (sometimes called verifiers) with their
dictionary list of common password hash values, because they do not know the salt
beforehand.

software keystore

A container that stores a Transparent Data Encryption a TDE master encryption key
for use as an auto-login software keystore, a local auto-login software keystore, or a
password-based software keystore.

tablespace encryption key

An encryption key for the encryption of a tablespace. The TDE tablespace encryption
key encrypts the tablespace encryption key, which in turn encrypts and decrypts data
in the tablespace.

TDE master encryption key

A key that is stored within a software keystore or a hardware keystore. For table
encryption, this key encrypts the TDE table key, and for tablespace encryption, it
encrypts the tablespace encryption key.

See also keystore.

TDE table key

An encryption key that is associated with a table whose columns are marked for
encryption. The TDE master encryption key encrypts this table encryption key.

wallet

A data structure used to store and manage security credentials for an individual
entity. Wallets are specific to Oracle Database only. A Wallet Resource Locator (WRL)

Glossary-4

Wallet Resource Locator (WRL)

provides all of the necessary information to locate the wallet. For Transparent Data
Encryption in Oracle Database Release 12¢ and later, the term for wallet is keystore.

wallet obfuscation

The ability to store and access an Oracle wallet without querying the user for a
password before access (supports single sign-on (SSO)).

Wallet Resource Locator (WRL)

A tool that provides all of the necessary information to locate a wallet. It is a path to
an operating system directory that contains a wallet.

Glossary-5

A

about managing, 11-4
ad hoc tools
Oracle Data Redaction, 8-3
administrative access to policies, restricting, 13-2
aggregate functions
affect on Data Redaction policy optimization, 12-2
ALTER SYSTEM statement
how compares with ADMINISTER KEY
MANAGEMENT statement, 5-5
APEX_UTIL.GET_NUMERIC_SESSION_STATE
function
Oracle Data Redaction policies (NV public
function), 10-7
APEX_UTIL.GET_SESSION_STATE function
Oracle Data Redaction policies (V public
function), 10-7
applications
database applications and Oracle Data Redaction,
8-3
modifying to use Transparent Data Encryption,
5-5
auto login keystores
and Transparent Data Encryption (TDE), 4-31
Automatic Storage Management (ASM)
moving software keystores from, 4-10

C

CDBs
Data Redaction masking policies, 12-3
PDBs with encrypted data, 6-12
TDE operations in root, 6-8
TDE operations in root and PDBs, 6-10
change data capture, synchronous, 3-18
closing hardware keystores, 4-18
closing software keystores, 4-18
column encryption
about, 2-3
changing algorithm, 3-24
changing encryption key, 3-24
creating encrypted table column with default
algorithm, 3-19

Index

column encryption (continued)
creating encrypted table column with non-default
algorithm, 3-20
creating index on encrypted column, 3-23
data types to encrypt, 3-17
existing tables
about, 3-22
adding encrypted column to, 3-22
disabling encryption, 3-23
encrypting unencrypted column, 3-23
external tables, 3-21
incompatibilities, 7-1
limitations, 7-1
performance, optimum, 7-4
restrictions, 3-18
salt, 3-24
security considerations, 5-2
skipping integrity check, 3-20
compliance
Transparent Data Encryption, 2-1
compression of Transparent Data Encryption data, 5-1
configuring software keystores
creating local auto-login keystore, 3-6

D

data at rest, 2-1
data deduplication of Transparent Data Encryption
data, 5-1

data redaction

See Oracle Data Redaction
data storage

Transparent Data Encryption, 5-4
database links

with Oracle Data Redaction policies, 12-2
database roles

Data Redaction policies, 10-7
DDL statements

Oracle Data Redaction policies, 12-1
DML statements

Oracle Data Redaction policies, 12-1

Index-1

E

editing custom formats, 11-7
editing policies, 11-13
Editions

Transparent Data Encryption, 6-16
encryption, 2-3

See also Transparent Data Encryption (TDE)

EXEMPT REDACTION POLICY privilege

using with Database Vault, 13-2
external keystores, 3-11
external store for passwords, 3-4

G

guidelines

ad hoc query attacks and Data Redaction, 13-1

application context value handling by Data
Redaction policies, 13-1

day-to-day operations and Data Redaction, 13-1

DDL statements and Data Redaction policies, 13-1

exhaustive SQL queries and inference and Data
Redaction, 13-1

materialized views and Data Redaction, 13-3

recycle bin and Data Redaction, 13-3

SYS_CONTEXT values and Data Redaction, 13-3

H

hardware keystores
backing up, 4-5
closing, 4-18

hardware security modules
backing up keystores, 4-5
plugging PDBs, 6-14
unplugging PDBs, 6-13

import/export utilities, original, 3-18
index range scans, 2-4
indexes
creating on encrypted column, 3-23
inline views
Data Redaction policies order of redaction, 12-2
Data Redaction redaction, 12-2
intruders
ad hoc query attacks, 13-1

K

keystores (continued)

backing up password-based software keystores (continued)
about, 4-4
backup identifier rules, 4-4
procedure, 4-5
changing hardware keystore password, 4-3
changing passwords for password-based software
keystores, 4-2
closing hardware keystores, 4-18
closing software keystores, 4-18
deleting, 4-21
external, 3-11
hardware keystore
configuration process, 3-10
master encryption key merge differing from
import or export, 4-37
merging
about, 4-6
auto-login into password-based, 4-8
one into another existing keystore, 4-7
reversing merge operation, 4-8
two into a third new keystore, 4-6
migrating
creating master encryption key for hardware
keystore-based encryption, 4-13
hardware keystore to software keystore, 4-14
keystore order after migration, 4-16
password key into hardware keystore, 4-12
migration using Oracle Key Vault, 4-17
moving out of ASM, 4-10
moving software keystore to a new location, 4-9
opening hardware keystores, 3-12
opening software keystores, 3-7
Oracle Database secrets
about, 4-38
storing in hardware keystore, 4-41
storing in software keystore, 4-39
using auto-login hardware keystore, 4-42

keystores, software

about creating, 3-4
configuration process, 3-1
external store for passwords, 3-4

keystores
about, 2-5
architecture, 2-3
ASM-based, 4-20
auto login, 4-31
backing up password-based software keystores

Index-2

masking

See Oracle Data Redaction

master encryption key

See TDE master encryption key

materialized views

Data Redaction guideline, 13-3
Transparent Data Encryption tablespace
encryption, 6-4

multitenant container databases

See CDBs

N

nested functions
Data Redaction policies order of redaction, 12-2
NV public function
(APEX_UTIL.GET_NUMERIC_SESSION_ST
ATE function), Data Redaction policies, 10-7

O

OLS_LABEL_DOMINATES public function
Data Redaction policies, 10-7
opening hardware keystores, 3-12
opening software keystores, 3-7
ORA-00979
not a GROUP BY expression error, 13-1
ORA-28081
Insufficient privileges - the command references a
redacted object error, 12-1
Oracle Application Express
filtering using by session state in Data Redaction
policies, 10-7
Oracle Call Interface
Transparent Data Encryption, 6-16
Oracle Data Guard
Transparent Data Encryption, 6-4
Oracle Data Pump
encrypted columns, 6-2
encrypted data, 6-1
encrypted data with dump sets, 6-3
exported data from Data Redaction policies, 12-6
exporting Oracle Data Redaction objects, 12-5
imported data from Data Redaction policies, 12-7
Oracle Data Redaction security policy, 12-4
Oracle Data Redaction
about, 8-1, 11-1
ad hoc tools, 8-3
aggregate functions, 12-2
benefits, 8-2
CDBs, 12-3
columns with XML-generated data, 12-3
creating custom format, 11-5
database applications, §-3
DBMS_REDACT.ADD_POLICY procedure
using, 10-3
DBMS_REDACT.ALTER_POLICY procedure
about, 10-31
example, 10-33
parameters required for various actions, 10-32
syntax, 10-31
DBMS_REDACT.DISABLE_POLICY
about, 10-37
example, 10-37
syntax, 10-37
DBMS_REDACT.DROP_POLICY
about, 10-39
examples, 10-39

Oracle Data Redaction (continued)

DBMS_REDACT.DROP_POLICY (continued)
syntax, 10-39
DBMS_REDACT.ENABLE_POLICY
about, 10-38
example, 10-38
syntax, 10-38
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES
procedure
about, 10-11
syntax, 10-11
using, 10-12
deleting policies, 11-16
editing custom format, 11-7
editions, 12-3
Enterprise Manager Cloud Control, 11-1, 11-4,11-5,11-7,
11-9
Enterprise Manager Cloud Control workflow, 11-2
exporting data using Data Pump Export, 12-6
exporting objects using Data Pump, 12-5
full data redaction
about, 9-1
creating policy for, 10-9
examples, 10-10
modifying default value, 10-11
syntax, 10-9
how differs from Oracle Database Real Application
Security masking, 12-4
how differs from Oracle Virtual Private Database masking,
12-3
importing data using Data Pump Export, 12-7
inline views order of redaction, 12-2
managing policies, 11-9
nested functions order of redaction, 12-2
no data redaction
about, 9-7, 10-29
creating policies for, 10-29
example, 10-29
syntax, 10-29
Oracle Data Pump security policy, 12-4
Oracle Enterprise Manager Data Masking and Subsetting
Pack, 12-7
partial data redaction
about, 9-2
character types, policies for, 10-16
data-time data types, 10-19
example using character data type, 10-17
example using data-time data type, 10-20
example using fixed character format, 10-15
example using number data type, 10-18
formats, fixed character, 10-14
number data types, 10-18
syntax, 10-13
privileges for creating policies, 10-2
random data redaction
about, 10-28
creating policies for, 10-28

Index-3

Oracle Data Redaction (continued)
random data redaction (continued)
example, 10-28

randomized data redaction
about, 9-4
regular expression data redaction
creating policies for, 10-20
custom, creating policies for, 10-26
example, 10-25
example of custom, 10-27
formats, 10-23
formats, creating policies for, 10-22
settings for, 10-26
syntax, 10-21
regular expression redaction
about, 9-3
SYS schema objects, 13-2
SYSTEM schema objects, 13-2
use cases, 8-2
viewing custom format, 11-7
when to use, §-2
WHERE clause redaction, 12-2
Oracle Data Redaction formats
:about managing in Cloud Control, 11-4
:viewing in Cloud Control, 11-7
creating in Cloud Control, 11-5
deleting in Cloud Control, 11-8
editing in Cloud Control, 11-7
sensitive column types, 11-2
Oracle Data Redaction partial redaction
creating policies for, 10-13
Oracle Data Redaction policies
about, 10-1
altering, 10-31
building reports, 10-39
creating
examples, 10-10
general syntax, 10-3
procedure, 10-3
creating in Cloud Control, 11-10
deleting in Cloud Control, 11-16
disabling, 10-37
disabling in Cloud Control, 11-15
dropping, 10-39
editing in Cloud Control, 11-13
enabling, 10-38
exempting users from, 10-30
expressions
by Application Express session state, 10-7
by database role, 10-7
by OLS label dominance, 10-7
by user environment, 10-6
filtering users
about, 10-6
no filtering, 10-8
finding information about, 10-41

Index-4

Oracle Data Redaction policies (continued)
Oracle Enterprise Manager Cloud Control, 11-16
redacting multiple columns in one policy, 10-36
viewing in Cloud Control, 11-14
Oracle Data Redaction, database links, 12-2
Oracle Data Redaction:Enterprise Manager Cloud
Control, 11-1,11-4,11-5,11-7,11-9
Oracle Data RedactionEnterprise Manager Cloud
Control
deleting custom format, 11-8
Oracle Database Real Application Security
Data Redaction, 12-4
Oracle Database Vault
using with Data Redaction, 13-2
Oracle Enterprise Manager Cloud Control
creating custom formats, 11-5
creating policies, 11-10
disabling policies, 11-15
Oracle Data Redaction, 11-5, 11-7,11-10, 11-14,
11-15
viewing details of a policy, 11-14
viewing formats, 11-7
Oracle Enterprise Manager Data Masking and
Subsetting Pack
Oracle Data Redaction impact, 12-7
Oracle GoldenGate
storing secrets in Oracle keystores, 4-45
Oracle Key Vault
migration of keystores, 4-17
Oracle Real Application Clusters
non-shared file systems to store TDE keystores,
6-5
Transparent Data Encryption, 6-5
Oracle Recovery Manager
Transparent Data Encryption, 4-20
Oracle Securefiles
Transparent Data Encryption, 6-6
Oracle Virtual Private Database (VPD)
Data Redaction, 12-3
orapki utility
how compares with ADMINISTER KEY
MANAGEMENT statement, 5-5
original import/export utilities, 3-18

P

PDBs
Data Redaction policies, 12-3
finding TDE keystore status for all PDBs, 6-15
master encryption keys
exporting, 6-10
importing, 6-10
Transparent Data Encryption, 6-8
performance
Transparent Data Encryption, 5-3
PKI encryption
backup and recovery operations, 5-10
hardware keystores, 5-10

PKI encryption (continued)
master encryption key, 5-9
tablespace encryption, 5-10

pluggable databases
See PDBs

R

recycle bin

Data Redaction policies and, 13-3
reports

based Data Redaction policies, 10-39
rotating

master encryption key, 4-31

S

salt
removing, 3-24
salt (TDE)
adding, 3-24
secrets
storing Oracle Database secrets in keystore
about, 4-38
storing in hardware keystore, 4-41
storing in software keystore, 4-39
SecureFiles
Transparent Data Encryption, 6-6
sensitive column types, 11-2
synchronous change data capture, 3-18
SYS user
Data Redaction policies, 13-2
SYS_CONTEXT function
Data Redaction policies, 13-3
SYS_SESSION_ROLES namespace used in Data
Redaction, 10-7
SYS_SESSION_ROLES SYS_CONTEXT namespace
Data Redaction, 10-7
SYSTEM user
Data Redaction policies, 13-2

T

tablespace encryption
about, 2-4
architecture, 2-4
creating encrypted tablespaces, 3-28
examples, 3-29
incompatibilities, 7-1
opening keystore, 3-26
performance overhead, 5-3
performance, optimum, 7-4
procedure, 3-25
restrictions, 3-25
security considerations for plaintext fragments,
5-3
setting tablespace key, 3-27

tablespace encryption (continued)
storage overhead, 5-4
tablespace master encryption key
setting, 3-27
TDE
See Transparent Data Encryption (TDE)
TDE master encryption keys
activating
about, 4-24
example, 4-26
procedure, 4-25
architecture, 2-3
attributes, 4-26
creating for later use
about, 4-22
examples, 4-23
procedure, 4-23
custom attribute tags
about, 4-28
creating, 4-28
disabling not allowed, 4-29
exporting, 4-33
exporting in PDBs, 6-10
finding currently used key, 4-27
importing, 4-36
importing in PDBs, 6-10
keystore merge differing from import or export,
4-37
resetting in keystore, 4-31
rotating, 4-31
setting in keystore, 4-29
Transparent Data Encryption (TDE)
about, 2-1
benefits, 2-1
CDBs
operations in root or PDBs, 6-10
column encryption
about, 2-3, 3-16
adding encrypting column to existing table,
3-22
changing algorithm, 3-24
changing encryption key, 3-24
creating encrypted column in external table,
3-21
creating index on encrypted column, 3-23
creating tables with default encryption
algorithm, 3-19
creating tables with non-default encryption
algorithm, 3-20
data types supported, 3-17
disabling encryption in existing column, 3-23
encrypting columns in existing tables, 3-22
encrypting existing column, 3-23
encryption and integrity algorithms, 2-7
restrictions, 3-18
salt in encrypted columns, 3-24
compatibility with application software, 7-1

Index-5

Transparent Data Encryption (TDE) (continued)

compatibility with Oracle Database tools, 7-1
compression of encrypted data, 5-1
configuring hardware keystores
about, 3-11
configuration step, 3-11
opening, 3-12
PKCS#11 library, 3-11
reconfiguring software keystore, 3-15
setting master encryption key, 3-14
sqlnet.ora configuration, 3-11
configuring software keystores
about, 3-1
creating auto-login keystore, 3-6
creating password-based keystore, 3-5
opening keystores, 3-7
setting software master encryption key, 3-8
sqlnet.ora file configuration, 3-2
data deduplication of encrypted data, 5-1
editions, 6-16
encryption and integrity algorithms, 2-7
finding information about, 3-29
frequently asked questions, 7-1
incompatibilities, 7-1
keystore management
ASM-based keystore, 4-20
backing up password-based software
keystores, 4-4
changing hardware keystore password, 4-3
changing password-based software keystore
password, 4-2
closing hardware keystores, 4-18
closing software keystore, 4-18
master encryption key attributes, 4-26
merging keystores, about, 4-6
merging keystores, auto-login into password-
based, 4-8
merging keystores, one into an existing, 4-7
merging keystores, reversing merge
operation, 4-8
merging keystores, two into a third new
keystore, 4-6
migrating password key and hardware
keystore, master encryption key
creation, 4-13
migrating password key and hardware
keystore, reverse migration, 4-14
migrating password key and hardware
keystore, sqlnet.ora configuration,
4-12
keystores
about, 2-5
benefits, 2-6
types, 2-6
master encryption key
rotating, 4-31
master encryption key attributes

Index-6

Transparent Data Encryption (TDE) (continued)

master encryption key attributes (continued)
about, 4-28
creating custom tags, 4-28
master encryption keys
exporting and importing, 4-33
resetting in keystore, 4-31
setting in keystore procedure, 4-29
setting in keystore, about, 4-29
modifying applications for use with, 5-5
multidatabase environments, 6-16
Oracle Call Interface, 6-16
Oracle Data Guard, 6-4
Oracle Data Pump
export and import operations on dump sets,
6-3
export and import operations on encrypted
columns, 6-2
Oracle Data Pump export and import operations
about, 6-1
Oracle Real Application Clusters
about, 6-5
non-shared file systems to store keystores,
6-5
Oracle Recovery Manager
keystores, 4-20
PDBs
about, 6-8
finding keystore status for all PDBs, 6-15
operations in root, 6-8
performance
database workloads, 7-4
decrypting entire data set, 7-4
optimum, 7-4
worst case scenario, /-4
performance overheads
about, 5-3
typical, 7-4
PKI encryption, 5-9
privileges required, 2-2
SecureFiles, 6-6
security considerations
column encryption, 5-2
general advice, 5-2
platintext fragments, 5-3
storage overhead, 5-4
storing Oracle GoldenGate secrets, 4-45
tablespace encryption
about, 2-4, 3-25
creating, 3-28
encryption and integrity algorithms, 2-7
examples, 3-29
opening keystore, 3-26
restrictions, 3-25
setting master encryption key, 3-27
tablespace encryption, setting with COMPATIBLE
parameter, 3-25

Transparent Data Encryption (TDE) (continued)
views, 3-29
Transparent Data Encryption (TDE) keystores
deleting, 4-21
moving software keystore to a new location, 4-9
Transparent Data Encryption (TDE)integrity
column encryption
creating tables without integrity checks
(NOMAC), 3-20
improving performance, 3-20
NOMAC parameter (TDE), 3-20
transportable tablespaces, 3-18

U

utilities, import/export, 3-18

Vv

V public function (APEX_UTIL.GET_SESSION_STATE
function), Data Redaction policies, 10-7
V$ENCRYPTION_WALLET view
keystore order after migration, 4-16
views
Data Redaction, 10-41

X

XML generation, 12-3

Index-7

Index-8

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database Advanced Security Guide
	Changes in Oracle Database Advanced Security 12c Release 1 (12.1.0.2)
	New Features
	Support for OLS_LABEL_DOMINATES in Data Redaction Policies
	Support for Oracle Key Vault for Keystore and Encryption Key Management

	Changes in Oracle Database Advanced Security 12c Release 1 (12.1.0.1)
	New Features
	New Keystore and Keystore Management functionality for Transparent Data Encryption and Other Database Components
	New Administrative Privilege for Transparent Data Encryption
	Oracle Data Redaction for Limiting Access to Sensitive Data

	Deprecated Features
	The Use of PKI to Manage Transparent Data Encryption Keys

	Other Changes

	1 Introduction to Oracle Advanced Security
	1.1 Transparent Data Encryption
	1.2 Oracle Data Redaction

	Part I Using Transparent Data Encryption
	2 Introduction to Transparent Data Encryption
	2.1 What Is Transparent Data Encryption?
	2.2 Benefits of Using Transparent Data Encryption
	2.3 Who Can Configure Transparent Data Encryption?
	2.4 Types and Components of Transparent Data Encryption
	2.4.1 About Transparent Data Encryption Types and Components
	2.4.2 How Transparent Data Encryption Column Encryption Works
	2.4.3 How Transparent Data Encryption Tablespace Encryption Works
	2.4.4 How the Keystore for the Storage of TDE Master Encryption Keys Works
	2.4.4.1 About the Keystore Storage of TDE Master Encryption Keys
	2.4.4.2 Benefits of the Keystore Storage Framework
	2.4.4.3 Types of Keystores

	2.4.5 Supported Encryption and Integrity Algorithms

	3 Configuring Transparent Data Encryption
	3.1 Configuring a Software Keystore
	3.1.1 About Configuring a Software Keystore
	3.1.2 Step 1: Set the Software Keystore Location in the sqlnet.ora File
	3.1.2.1 About the Keystore Location in the sqlnet.ora File
	3.1.2.2 Configuring the sqlnet.ora File for a Software Keystore Location
	3.1.2.3 Example: Configuring a Software Keystore for a Regular File System
	3.1.2.4 Example: Configuring a Software Keystore When Multiple Databases Share the sqlnet.ora File
	3.1.2.5 Example: Configuring a Software Keystore for Oracle Automatic Storage Management
	3.1.2.6 Example: Configuring a Software Keystore for an Oracle Automatic Storage Management Disk Group

	3.1.3 Step 2: Create the Software Keystore
	3.1.3.1 About Creating Software Keystores
	3.1.3.2 Creating a Password-Based Software Keystore
	3.1.3.3 Creating an Auto-Login or a Local Auto-Login Software Keystore

	3.1.4 Step 3: Open the Software Keystore
	3.1.4.1 About Opening Software Keystores
	3.1.4.2 Opening a Software Keystore

	3.1.5 Step 4: Set the Software TDE Master Encryption Key
	3.1.5.1 About Setting the Software TDE Master Encryption Key
	3.1.5.2 Setting the TDE Master Encryption Key in the Software Keystore

	3.1.6 Step 5: Encrypt Your Data

	3.2 Configuring a Hardware Keystore
	3.2.1 About Configuring a Hardware (External) Keystore
	3.2.2 Step 1: Set the Hardware Keystore Type in the sqlnet.ora File
	3.2.3 Step 2: Configure the Hardware Security Module
	3.2.4 Step 3: Open the Hardware Keystore
	3.2.4.1 About Opening the Hardware Keystore
	3.2.4.2 Opening the Hardware Keystore

	3.2.5 Step 4: Set the Hardware Keystore TDE Master Encryption Key
	3.2.5.1 About Setting the Hardware Keystore TDE Master Encryption Key
	3.2.5.2 Setting a TDE Master Encryption Key if You Have Not Previously Configured One
	3.2.5.3 Migration of a Previously Configured TDE Master Encryption Key

	3.2.6 Step 5: Encrypt Your Data

	3.3 Encrypting Columns in Tables
	3.3.1 About Encrypting Columns in Tables
	3.3.2 Data Types That Can Be Encrypted with TDE Column Encryption
	3.3.3 Restrictions on Using Transparent Data Encryption Column Encryption
	3.3.4 Creating Tables with Encrypted Columns
	3.3.4.1 About Creating Tables with Encrypted Columns
	3.3.4.2 Creating a Table with an Encrypted Column Using the Default Algorithm
	3.3.4.3 Creating a Table with an Encrypted Column Using No Algorithm or a Non-Default Algorithm
	3.3.4.4 Using the NOMAC Parameter to Save Disk Space and Improve Performance
	3.3.4.5 Example: Using the NOMAC Parameter in a CREATE TABLE Statement
	3.3.4.6 Example: Changing the Integrity Algorithm for a Table
	3.3.4.7 Creating an Encrypted Column in an External Table

	3.3.5 Encrypting Columns in Existing Tables
	3.3.5.1 About Encrypting Columns in Existing Tables
	3.3.5.2 Adding an Encrypted Column to an Existing Table
	3.3.5.3 Encrypting an Unencrypted Column
	3.3.5.4 Disabling Encryption on a Column

	3.3.6 Creating an Index on an Encrypted Column
	3.3.7 Adding Salt to an Encrypted Column
	3.3.8 Removing Salt from an Encrypted Column
	3.3.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns

	3.4 Encrypting Tablespaces
	3.4.1 Restrictions on Using Transparent Data Encryption Tablespace Encryption
	3.4.2 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption
	3.4.2.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption
	3.4.2.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption

	3.4.3 Step 2: Set the Tablespace TDE Master Encryption Key
	3.4.4 Step 3: Create the Encrypted Tablespace
	3.4.4.1 About Creating Encrypted Tablespaces
	3.4.4.2 Creating an Encrypted Tablespace
	3.4.4.3 Example: Creating an Encrypted Tablespace That Uses 3DES168
	3.4.4.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm

	3.5 Transparent Data Encryption Data Dynamic and Data Dictionary Views

	4 Managing the Keystore and the TDE Master Encryption Key
	4.1 Managing the Keystore
	4.1.1 Changing the Password of a Password-Based Software Keystore
	4.1.1.1 About Changing the Password of a Password-Based Software Keystore
	4.1.1.2 Changing the Password-Based Software Keystore Password

	4.1.2 Changing the Password of a Hardware Keystore
	4.1.3 Backing Up Password-Based Software Keystores
	4.1.3.1 About Backing Up Password-Based Software Keystores
	4.1.3.2 Creating a Backup Identifier String for the Backup Keystore
	4.1.3.3 How the V$ENCRYPTION_WALLET View Interprets Backup Operations
	4.1.3.4 Backing Up a Password-Based Software Keystore

	4.1.4 Backups of the Hardware Keystore
	4.1.5 Merging Software Keystores
	4.1.5.1 About Merging Software Keystores
	4.1.5.2 Merging Two Software Keystores into a Third New Keystore
	4.1.5.3 Merging One Software Keystore into an Existing Software Keystore
	4.1.5.4 Merging an Auto-Login Software Keystore into an Existing Password-Based Software Keystore
	4.1.5.5 Reversing a Software Keystore Merge Operation

	4.1.6 Moving a Software Keystore to a New Location
	4.1.7 Moving a Software Keystore Out of Automatic Storage Management
	4.1.8 Migrating Between a Software Password Keystore and a Hardware Keystore
	4.1.8.1 Migrating from a Password-Based Software Keystore to a Hardware Keystore
	4.1.8.1.1 Step 1: Convert the Software Keystore to Open with the Hardware Keystore
	4.1.8.1.2 Step 2: Configure sqlnet.ora for the Migration of the Password-Based Software Keystore
	4.1.8.1.3 Step 3: Perform the Hardware Keystore Migration

	4.1.8.2 Migrating from a Hardware Keystore to a Password-Based Software Keystore
	4.1.8.2.1 About Migrating Back from a Hardware Keystore
	4.1.8.2.2 Step 1: Configure sqlnet.ora for the Reverse Migration
	4.1.8.2.3 Step 2: Configure the Keystore for the Reverse for the Reverse Migration
	4.1.8.2.4 Step 3: Configure the Hardware Keystore to Open with the Software Keystore

	4.1.8.3 Keystore Order After a Migration

	4.1.9 Migration of Keystores to and from Oracle Key Vault
	4.1.10 Closing a Keystore
	4.1.10.1 About Closing Keystores
	4.1.10.2 Closing a Software Keystore
	4.1.10.3 Closing a Hardware Keystore

	4.1.11 Using a Software Keystore That Resides on ASM Volumes
	4.1.12 Backup and Recovery of Encrypted Data
	4.1.13 Deletion of Keystores

	4.2 Managing the TDE Master Encryption Key
	4.2.1 Creating TDE Master Encryption Keys for Later Use
	4.2.1.1 About Creating a TDE Master Encryption Key for Later Use
	4.2.1.2 Creating a TDE Master Encryption Key for Later Use
	4.2.1.3 Example: Creating a TDE Master Encryption Key in a Single Database
	4.2.1.4 Example: Creating a TDE Master Encryption Key in All PDBs

	4.2.2 Activation of TDE Master Encryption Keys
	4.2.2.1 About Activating TDE Master Encryption Keys
	4.2.2.2 Activating a TDE Master Encryption Key
	4.2.2.3 Example: Activating a TDE Master Encryption Key

	4.2.3 TDE Master Encryption Key Attribute Management
	4.2.3.1 TDE Master Encryption Key Attributes
	4.2.3.2 Finding the TDE Master Encryption Key That Is in Use

	4.2.4 Creating Custom TDE Master Encryption Key Attributes for Reporting Purposes
	4.2.4.1 About Creating Custom Attribute Tags
	4.2.4.2 Creating a Custom Attribute Tag

	4.2.5 Setting and Resetting the TDE Master Encryption Key in the Keystore
	4.2.5.1 About Setting or Rotating the TDE Master Encryption Key in the Keystore
	4.2.5.2 Creating and Backing Up a TDE Master Encryption Key and Applying a Tag to It
	4.2.5.3 About Rotating the TDE Master Encryption Key
	4.2.5.4 Rotating the TDE Master Encryption Key

	4.2.6 Exporting and Importing the TDE Master Encryption Key
	4.2.6.1 About Exporting and Importing the TDE Master Encryption Key
	4.2.6.2 About Exporting TDE Master Encryption Keys
	4.2.6.3 Exporting a TDE Master Encryption Key
	4.2.6.4 Example: Exporting a TDE Master Encryption Key by Using a Subquery
	4.2.6.5 Example: Exporting a List of TDE Master Encryption Key Identifiers to a File
	4.2.6.6 Example: Exporting All TDE Master Encryption Keys of the Database
	4.2.6.7 About Importing TDE Master Encryption Keys
	4.2.6.8 Importing a TDE Master Encryption Key
	4.2.6.9 Example: Importing a TDE Master Encryption Key
	4.2.6.10 How Keystore Merge Differs from TDE Master Encryption Key Export or Import

	4.2.7 Management of TDE Master Encryption Keys Using Oracle Key Vault

	4.3 Storing Secrets Used by Oracle Database
	4.3.1 About Storing Oracle Database Secrets in a Keystore
	4.3.2 Storage of Oracle Database Secrets in a Software Keystore
	4.3.3 Example: Adding an HSM Password to a Software Keystore
	4.3.4 Example: Changing an HSM Password That Is Stored as a Secret in a Software Keystore
	4.3.5 Example: Deleting an HSM Password That Is Stored as a Secret in a Software Keystore
	4.3.6 Storage of Oracle Database Secrets in a Hardware Keystore
	4.3.7 Example: Adding an Oracle Database Secret to a Hardware Keystore
	4.3.8 Example: Changing an Oracle Database Secret in a Hardware Keystore
	4.3.9 Example: Deleting an Oracle Database Secret in a Hardware Keystore
	4.3.10 Configuring Auto-Login Hardware Security Modules
	4.3.10.1 About Configuring Auto-Login Hardware Security Modules
	4.3.10.2 Configuring an Auto-Login Hardware Security Module

	4.4 Storing Oracle GoldenGate Secrets in a Keystore
	4.4.1 About Storing Oracle GoldenGate Secrets in Keystores
	4.4.2 Oracle GoldenGate Extract Classic Capture Mode TDE Requirements
	4.4.3 Configuring TDE Keystore Support for Oracle GoldenGate
	4.4.3.1 Step 1: Decide on a Shared Secret for the Keystore
	4.4.3.2 Step 2: Configure Oracle Database for TDE Support for Oracle GoldenGate
	4.4.3.3 Step 3: Store the TDE GoldenGate Shared Secret in the Keystore
	4.4.3.4 Step 4: Set the TDE Oracle GoldenGate Shared Secret in the Extract Process

	5 General Considerations of Using Transparent Data Encryption
	5.1 Compression and Data Deduplication of Encrypted Data
	5.2 Security Considerations for Transparent Data Encryption
	5.2.1 Transparent Data Encryption General Security Advice
	5.2.2 Transparent Data Encryption Column Encryption-Specific Advice
	5.2.3 Managing Security for Plaintext Fragments

	5.3 Performance and Storage Overhead of Transparent Data Encryption
	5.3.1 Performance Overhead of Transparent Data Encryption
	5.3.2 Storage Overhead of Transparent Data Encryption

	5.4 Modifying Your Applications for Use with Transparent Data Encryption
	5.5 How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT
	5.6 Using Transparent Data Encryption with PKI Encryption
	5.6.1 Software Master Encryption Key Use with PKI Key Pairs
	5.6.2 TDE Tablespace and Hardware Keystores with PKI Encryption
	5.6.3 Backup and Recovery of a PKI Key Pair

	6 Using Transparent Data Encryption with Other Oracle Features
	6.1 How Transparent Data Encryption Works with Export and Import Operations
	6.1.1 About Exporting and Importing Encrypted Data
	6.1.2 Exporting and Importing Tables with Encrypted Columns
	6.1.3 Using Oracle Data Pump to Encrypt Entire Dump Sets

	6.2 How Transparent Data Encryption Works with Oracle Data Guard
	6.3 How Transparent Data Encryption Works with Oracle Real Application Clusters
	6.3.1 About Using Transparent Data Encryption with Oracle Real Application Clusters
	6.3.2 Using a Non-Shared File System to Store a Software Keystore in Oracle RAC

	6.4 How Transparent Data Encryption Works with SecureFiles
	6.4.1 About Transparent Data Encryption and SecureFiles
	6.4.2 Example: Creating a SecureFiles LOB with a Specific Encryption Algorithm
	6.4.3 Example: Creating a SecureFiles LOB with a Column Password Specified

	6.5 How Transparent Data Encryption Works in a Multitenant Environment
	6.5.1 About Using Transparent Data Encryption in a Multitenant Environment
	6.5.2 Operations That Must Be Performed in Root
	6.5.3 Operations That Can Be Performed in Root or in a PDB
	6.5.4 Exporting and Importing TDE Master Encryption Keys for a PDB
	6.5.4.1 About Exporting and Importing TDE Master Encryption Keys for a PDB
	6.5.4.2 Exporting or Importing a TDE Master Encryption Key for a PDB
	6.5.4.3 Example: Exporting a TDE Master Encryption Key from a PDB
	6.5.4.4 Example: Importing a TDE Master Encryption Key into a PDB

	6.5.5 Unplugging and Plugging a PDB with Encrypted Data in a CDB
	6.5.5.1 Unplugging a PDB That Has Encrypted Data
	6.5.5.2 Plugging a PDB That Has Encrypted Data into a CDB
	6.5.5.3 Unplugging a PDB That Has Master Keys Stored in an HSM
	6.5.5.4 Plugging a PDB That Has Master Keys Stored in an HSM

	6.5.6 How Keystore Open and Close Operations Work in a Multitenant Environment
	6.5.7 Finding the Keystore Status for All of the PDBs in a Multitenant Environment

	6.6 How Transparent Data Encryption Works with Oracle Call Interface
	6.7 How Transparent Data Encryption Works with Editions
	6.8 Configuring Transparent Data Encryption to Work in a Multidatabase Environment

	7 Frequently Asked Questions About Transparent Data Encryption
	7.1 Transparency Questions About Transparent Data Encryption
	7.2 Performance Questions About Transparent Data Encryption

	Part II Using Oracle Data Redaction
	8 Introduction to Oracle Data Redaction
	8.1 What Is Oracle Data Redaction?
	8.2 When to Use Oracle Data Redaction
	8.3 Benefits of Using Oracle Data Redaction
	8.4 Target Use Cases for Oracle Data Redaction
	8.4.1 Oracle Data Redaction Use with Database Applications
	8.4.2 Oracle Data Redaction with Ad Hoc Database Queries Considerations

	9 Oracle Data Redaction Features and Capabilities
	9.1 Full Data Redaction to Redact All Data
	9.2 Partial Data Redaction to Redact Sections of Data
	9.3 Regular Expressions to Redact Patterns of Data
	9.4 Random Data Redaction to Generate Random Values
	9.5 Comparison of Full, Partial, and Random Redaction Based on Data Types
	9.5.1 Oracle Built-in Data Types Redaction Capabilities
	9.5.2 ANSI Data Types Redaction Capabilities
	9.5.3 User Defined Data Types or Oracle Supplied Types Redaction Capabilities

	9.6 No Redaction for Testing Purposes

	10 Configuring Oracle Data Redaction Policies
	10.1 About Oracle Data Redaction Policies
	10.2 Who Can Create Oracle Data Redaction Policies?
	10.3 Planning an Oracle Data Redaction Policy
	10.4 General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
	10.5 Using Expressions to Define Conditions for Data Redaction Policies
	10.5.1 About Using Expressions in Data Redaction Policies
	10.5.2 Applying the Redaction Policy Based on User Environment
	10.5.3 Applying the Redaction Policy Based on Database Roles
	10.5.4 Applying the Redaction Policy Based on Oracle Label Security Label Dominance
	10.5.5 Applying the Redaction Policy Based on Application Express Session States
	10.5.6 Applying the Redaction Policy to All Users

	10.6 Creating a Full Redaction Policy and Altering the Full Redaction Value
	10.6.1 Creating a Full Redaction Policy
	10.6.1.1 About Creating Full Data Redaction Policies
	10.6.1.2 Syntax for Creating a Full Redaction Policy
	10.6.1.3 Example: Full Redaction Policy
	10.6.1.4 Example: Fully Redacted Character Values

	10.6.2 Altering the Default Full Data Redaction Value
	10.6.2.1 About Altering the Default Full Data Redaction Value
	10.6.2.2 Syntax for the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES Procedure
	10.6.2.3 Modifying the Default Full Data Redaction Value

	10.7 Creating a Partial Redaction Policy
	10.7.1 About Creating Partial Redaction Policies
	10.7.2 Syntax for Creating a Partial Redaction Policy
	10.7.3 Creating Partial Redaction Policies Using Fixed Character Formats
	10.7.3.1 Settings for Fixed Character Formats
	10.7.3.2 Example: Partial Redaction Policy Using a Fixed Character Format

	10.7.4 Creating Partial Redaction Policies Using Character Data Types
	10.7.4.1 Settings for Character Data Types
	10.7.4.2 Example: Partial Redaction Policy Using a Character Data Type

	10.7.5 Creating Partial Redaction Policies Using Number Data Types
	10.7.5.1 Settings for Number Data Types
	10.7.5.2 Example: Partial Redaction Policy Using a Number Data Type

	10.7.6 Creating Partial Redaction Policies Using Date-Time Data Types
	10.7.6.1 Settings for Date-Time Data Types
	10.7.6.2 Example: Partial Redaction Policy Using Date-Time Data Type

	10.8 Creating a Regular Expression-Based Redaction Policy
	10.8.1 About Creating Regular Expression-Based Redaction Policies
	10.8.2 Syntax for Creating a Regular Expression-Based Redaction Policy
	10.8.3 Regular Expression-Based Redaction Policies Using Formats
	10.8.3.1 Regular Expression Formats
	10.8.3.2 Example: Regular Expression Redaction Policy Using Formats

	10.8.4 Custom Regular Expression Redaction Policies
	10.8.4.1 Settings for Custom Regular Expressions
	10.8.4.2 Example: Custom Regular Expression Redaction Policy

	10.9 Creating a Random Redaction Policy
	10.9.1 Syntax for Creating a Random Redaction Policy
	10.9.2 Example: Random Redaction Policy

	10.10 Creating a Policy That Uses No Redaction
	10.10.1 Syntax for Creating a Policy with No Redaction
	10.10.2 Example: Performing No Redaction

	10.11 Exemption of Users from Oracle Data Redaction Policies
	10.12 Altering an Oracle Data Redaction Policy
	10.12.1 About Altering Oracle Data Redaction Policies
	10.12.2 Syntax for the DBMS_REDACT.ALTER_POLICY Procedure
	10.12.3 Parameters Required for DBMS_REDACT.ALTER_POLICY Actions
	10.12.4 Tutorial: Altering an Oracle Data Redaction Policy

	10.13 Redacting Multiple Columns
	10.13.1 Adding Columns to a Data Redaction Policy for a Single Table or View
	10.13.2 Example: Redacting Multiple Columns

	10.14 Disabling and Enabling an Oracle Data Redaction Policy
	10.14.1 Disabling an Oracle Data Redaction Policy
	10.14.2 Enabling an Oracle Data Redaction Policy

	10.15 Dropping an Oracle Data Redaction Policy
	10.16 Tutorial: SQL Expressions to Build Reports with Redacted Values
	10.17 Oracle Data Redaction Policy Data Dictionary Views

	11 Using Oracle Data Redaction in Oracle Enterprise Manager
	11.1 About Using Oracle Data Redaction in Oracle Enterprise Manager
	11.2 Oracle Data Redaction Workflow
	11.3 Management of Sensitive Column Types in Enterprise Manager
	11.4 Managing Oracle Data Redaction Formats Using Enterprise Manager
	11.4.1 About Managing Oracle Data Redaction Formats Using Enterprise Manager
	11.4.2 Creating a Custom Oracle Data Redaction Format
	11.4.3 Editing a Custom Oracle Data Redaction Format
	11.4.4 Viewing Oracle Data Redaction Formats
	11.4.5 Deleting a Custom Oracle Data Redaction Format

	11.5 Managing Oracle Data Redaction Policies Using Enterprise Manager
	11.5.1 About Managing Oracle Data Redaction Policies Using Enterprise Manager
	11.5.2 Creating an Oracle Data Redaction Policy Using Enterprise Manager
	11.5.3 Editing an Oracle Data Redaction Policy Using Enterprise Manager
	11.5.4 Viewing Oracle Data Redaction Policy Details Using Enterprise Manager
	11.5.5 Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager
	11.5.6 Deleting an Oracle Data Redaction Policy Using Enterprise Manager

	12 Oracle Data Redaction Use with Oracle Database Features
	12.1 Oracle Data Redaction and DML and DDL Operations
	12.2 Oracle Data Redaction and Nested Functions, Inline Views, and the WHERE Clause
	12.3 Oracle Data Redaction and Database Links
	12.4 Oracle Data Redaction and Aggregate Functions
	12.5 Oracle Data Redaction and Object Types
	12.6 Oracle Data Redaction and XML Generation
	12.7 Oracle Data Redaction and Editions
	12.8 Oracle Data Redaction in a Multitenant Environment
	12.9 Oracle Data Redaction and Oracle Virtual Private Database
	12.10 Oracle Data Redaction and Oracle Database Real Application Security
	12.11 Oracle Data Redaction and Oracle Database Vault
	12.12 Oracle Data Redaction and Oracle Data Pump
	12.12.1 Oracle Data Pump Security Model for Oracle Data Redaction
	12.12.2 Export of Objects That Have Oracle Data Redaction Policies Defined
	12.12.2.1 Finding Type Names Used by Oracle Data Pump
	12.12.2.2 Exporting Only the Data Dictionary Metadata Related to Data Redaction Policies
	12.12.2.3 Importing Objects Using the INCLUDE Parameter in IMPDP

	12.12.3 Export of Data Using the EXPDP Utility access_method Parameter
	12.12.4 Import of Data into Objects Protected by Oracle Data Redaction

	12.13 Oracle Data Redaction and Data Masking and Subsetting Pack

	13 Security Considerations for Oracle Data Redaction
	13.1 Oracle Data Redaction General Usage Guidelines
	13.2 Restriction of Administrative Access to Oracle Data Redaction Policies
	13.3 How Oracle Data Redaction Affects the SYS, SYSTEM, and Default Schemas
	13.4 Policy Expressions That Use SYS_CONTEXT Attributes
	13.5 Oracle Data Redaction Policies on Materialized Views
	13.6 Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled

	Glossary
	actual data
	auto-login software keystore
	cipher suite
	ciphertext
	data redaction
	decryption
	encrypted text
	encryption
	hardware keystore
	hardware security module
	inference
	key pair
	keystore
	local auto-login software keystore
	mask
	password-based software keystore
	plaintext
	private key
	public key
	public key encryption
	public and private key pair
	public key infrastructure (PKI)
	redacted data
	salt
	software keystore
	tablespace encryption key
	TDE master encryption key
	TDE table key
	wallet
	wallet obfuscation
	Wallet Resource Locator (WRL)

	Index

