

Best Practices for Synchronous Redo Transport
Data Guard and Active Data Guard
O R A C L E W H I T E P A P E R | M A R C H 2 0 1 5

BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

Table of Contents

Introduction 1

Data Guard Synchronous Transport – an Overview 2

Synchronous Transport Performance 3

Synchronous Transport Enhancements 4

Oracle Database 11g Release 2 4

Oracle Database 12c 5

Configuration Best Practices 5

Set tcp socket buffer size to 3 x BDP 5

Configure standby redo logs 7

Set SDU size to 65535 7

Configure sufficient resources for optimal system performance 8

Use Fast Sync - SYNC NOAFFIRM 8

Consider Exadata for enhanced performance in a zero data loss configuration 8

TUNING 8

Understanding how synchronous transport insures data integrity 12

Assessing performance 13

How to assess SYNC performance with Oracle Database 11.2 16

How to assess SYNC performance with Oracle Database 12c 17

Diagnosing High Log File SYNC Waits 18

Data Guard Fast Sync 20

Conclusion 21

1 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

Introduction

The Oracle Maximum Availability Architecture (MAA) with Oracle Data Guard provides the most

comprehensive solution available to eliminate single points of failure for mission critical Oracle

Databases. It prevents data loss and downtime in the simplest and most economical manner by

maintaining one or more synchronized physical replicas of a production database at a remote location.

If the production database becomes unavailable for any reason, client connections can quickly, and in

some configurations transparently, failover to a synchronized replica to immediately restore service.

Active Data Guard extends basic Data Guard capabilities to eliminate the high cost of idle redundancy

by enabling reporting applications, ad-hoc queries, data extracts, and fast incremental backups to be

offloaded to read-only copies of the production database. Active Data Guard’s complete focus on real-

time data protection and availability and its deep integration with the Oracle Database eliminates

compromises in data protection, performance, availability and complexity found in storage remote

mirroring or other host-based replication solutions.

Data Guard and Active Data Guard are the only Oracle-aware replication solutions can guarantee zero

data loss failover to an already running, synchronized copy of a production database. New capabilities

with Active Data Guard 12c extend zero data loss protection using synchronized replicas located at

any distance from the production database, without impacting production database performance or

adding complexity to failover operations. This provides both high availability and data protection for the

Oracle database in the event of database, cluster, site, region, and geographic outages.

This paper provides Oracle MAA best practices for using synchronous redo transport in a Data Guard

or Active Data Guard configuration. It is designed for database administrators who have a working

knowledge of Data Guard and Active Data Guard configurations using Maximum Availability or

Maximum Protection modes. These are the modes where the integration of synchronous redo

transport with the Data Guard managed recovery process (MRP) provides a guarantee of zero data

loss should there be an unplanned outage of the production database.

.

2 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

Data Guard Synchronous Transport – an Overview
A Data Guard configuration includes a production database referred to as the primary database, and up to 30
directly connected replicas referred to as standby databases. Primary and standby databases connect over TCP/IP
using Oracle Net Services. There are no restrictions on where the databases are physically located provided they
can communicate with each other. A standby database is initially created from a backup of the primary database.
Data Guard automatically synchronizes the primary database and all standby databases by transmitting primary
database redo - the information used by every Oracle Database to protect transactions - and applying it to the
standby database.

Data Guard transport services handle all aspects of transmitting redo from a primary to a standby databases(s). As
users commit transactions at a primary database, redo records are generated and written to a local online log file.
Data Guard transport services simultaneously transmit the same redo directly from the primary database log buffer
(memory allocated within system global area) to the standby database(s) where it is written to a standby redo log
file. Data Guard transport is very efficient for the following reasons:

» Data Guard’s direct transmission from memory avoids disk I/O overhead on a primary database. This is different
from how many other host-based replication solutions increase I/O on a primary database by reading data from
disk and then transmitting the changes.

» Data Guard transmits only database redo. This is in stark contrast to storage remote-mirroring which must
transmit every changed block in every file in order to maintain real-time synchronization. Oracle tests have shown
that storage remote-mirroring transmits up to 7 times more network volume, and 27 times more network I/O
operations than Data Guard. For a more complete discussion of the advantages of Data Guard compared to
storage remote-mirroring solutions refer to Oracle Active Data Guard vs Storage Remote Mirroring.1

Data Guard offers two choices of transport services: synchronous and asynchronous. Synchronous redo transport -
the subject of this paper - requires a primary database to wait for confirmation from the standby that redo has been
received and written to disk (a standby redo log file) before commit success is signaled to the application.
Synchronous transport combined with the deep understanding of transaction semantics by Data Guard apply
services provides a guarantee of zero data loss protection should the primary database suddenly fail.

Data Guard also provides three different modes of operation that help users balance cost, availability, performance,
and data protection - shown in Table 1. Each mode defines the behavior of the Data Guard configuration if a
primary database loses contact with its standby. Two of the three modes use synchronous transport.

TABLE 1: DATA GUARD PROTECTION MODES

Mode Risk of data loss Transport If no acknowledgement from the standby database, then:

Maximum
Protection

Zero data loss

Double failure protection

SYNC Signal commit success to the application only after acknowledgement is
received from a standby database that redo for that transaction has been
hardened to disk. The production database cannot proceed until
acknowledgement has been received.

Maximum
Availability

Zero data loss

Single failure protection

SYNC

FAST SYNC

FAR SYNC

Signal commit success to the application only after acknowledgement is
received from a standby database or after NET_TIMEOUT threshold
period expires – whichever occurs first. A network or standby database
outage does not affect the availability of the production database.

Maximum
Performance

Potential for

minimal data loss

ASYNC Primary never waits for standby acknowledgment to signal commit
success to the application. There can be no guarantee of zero data loss.

1 http://www.oracle.com/technetwork/database/availability/dataguardvsstoragemirroring-2082185.pdf

http://www.oracle.com/technetwork/database/availability/dataguardvsstoragemirroring-2082185.pdf�

3 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

Synchronous Transport Performance

Data Guard also provides a number of performance advantages compared to synchronous solutions based upon
storage remote- mirroring. Recall from previous discussion that Data Guard only transmits redo. Storage remote-
mirroring, in contrast, must transmit every change to every block to maintain the same real-time protection offered
by Data Guard. This means storage remote-mirroring transmits the volume of data transmitted by Data Guard plus
all writes to: data files, additional members of online log file groups, archived log files, control file, flashback log files,
etc. The impact is significant. For example, the Oracle process that writes to data files is called Database Writer
(DBWR) and anything that slows down DBWR can have a significant impact on database performance.
Synchronous storage remote mirroring will impact DBWR by design, because each write by DBWR is delayed by
the round trip network latency (RTT) between mirrored volumes. Data Guard is designed never to affect DBWR on
the primary database.

Oracle has conducted numerous tests to characterize the impact of synchronous transport on a production
database. The results of two representative tests are provided below. This data provides a general perspective on
performance impact – it should not be used to extrapolate an expected impact for your production workloads.

Each application will have a different tolerance for synchronous replication. Differences in application concurrency,
number of sessions, the transaction size in bytes, how often sessions commit, and log switch frequency – result in
differences in impact from one application to the next even if round-trip network latency (RTT), bandwidth and log
file write i/o performance are all equal. In general Oracle sees customers having greater success with synchronous
transport when round trip network latency is less than 5ms, than when latency is greater than 5ms. Testing is always
recommended before drawing any specific conclusions on the impact of synchronous replication on your workloads.

Test 1: OLTP Workload, Small Inserts

Swingbench, (a public domain load generator2

) was used to simulate OLTP workload that generated redo at a rate
of 30MB/second. Results showed 3% performance impact at 1ms RTT and 5% impact at 5ms RTT (see Figure 1).

Figure 1: Performance Impact of Synchronous Transport for OLTP Workload - Small Inserts

2 http://dominicgiles.com/swingbench.html

4 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

The Swingbench workload in Test 1 had the following characteristics:

» Random DMLs, 1ms think time, 400 users, 6000+ transactions per second, 30MB/s peak redo rate
» Small inserts: 5K redo size, 120 logical reads, 30 block changes per transaction
» Three test runs: no Data Guard, and two Data Guard test runs with round-trip network latencies of 1 and 5ms
» Exadata 2-node RAC database, Oracle 11.2.0.4, Exadata Smart Flash Logging, and Write-Back flash cache

Test 2: OLTP Workload, Large Inserts

A second test with the same system and database configuration profiled the impact on OLTP workload when
average transaction size was increased to 440K along with a corresponding increase in redo throughput. There was
a 1% performance impact at <1ms RTT and 7% impact at 2ms RTT, and 12% impact at 5ms RTT (see Figure 2).

Figure 2: Performance Impact of Synchronous Transport for OLTP Workload - Large Inserts

The Swingbench workload in Test 2 had the following characteristics:

» Large insert OLTP workload: 180+ transactions per second, 83MB/s peak redo rate, random tables
» Transaction profile: 440K redo size, 6000 logical reads, 2100 block changes per transaction
» Baseline with no Data Guard, then Data Guard with 1, 2 and 5ms RTT network latencies

Synchronous Transport Enhancements
Synchronous transport has evolved over the course of numerous Oracle Database Releases. The technical details
of synchronous transport and related Oracle MAA best practices are identical to both Data Guard and Active Data
Guard. All Data Guard best practices described in this paper apply to Active Data Guard as well.

Oracle Database 11g Release 2

Data Guard 11g Release 2 reduces the performance impact of synchronous transport by transmitting redo to the
remote standby in parallel with LGWR writing redo to the local online log file of the primary database – reducing the
total round trip time required by synchronous replication. This is an improvement over previous Data Guard

5 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

 releases where transport would wait for the local log file write to complete before transmitting redo to the remote
standby. The reduction in total round trip time enables greater geographic separation between primary and standby
databases in a synchronous zero data loss configuration. Alternatively, on low latency networks it can reduce the
impact of SYNC replication on primary database performance to near zero. This same architecture is used by
Oracle Database 12c.

Oracle Database 12c

Data Guard Fast Sync (SYNC NOAFFIRM) with Oracle Database 12c provides an easy way of improving
performance in synchronous zero data loss configurations. Fast Sync allows a standby to acknowledge the primary
database as soon as it receives redo in memory, without waiting for disk I/O to a standby redo log file. This reduces
the impact of synchronous transport on primary database performance by further shortening the total round-trip time
between primary and standby. Fast Sync can introduce a very small exposure to data loss should simultaneous
failures impact both primary and standby databases before the standby I/O completes. The time interval, however, is
so brief (both failures must occur within milliseconds of the other) and the circumstances so unique that there is a
very low likelihood of this occurring. Fast Sync is included with Data Guard 12c (an Active Data Guard license is not
required). Fast Sync must be explicitly enabled by the administrator otherwise Data Guard 12c synchronous redo
transport defaults to the same behavior as Data Guard 11g (SYNC AFFIRM).

Active Data Guard 12c includes a new capability called Far Sync. Active Data Guard Far Sync enables zero data
loss protection even when a primary and standby database are located hundreds or thousands of miles apart,
reducing or eliminating the impact to the production database of synchronous communication across a wide area
network. When combined with Oracle Advanced Compression, Far Sync enables off-host redo transport
compression, conserving bandwith with zero overhead on the production system. Far Sync is out of scope of this
paper, for more information and best practices see, Oracle Active Data Guard Far Sync - Zero Data Loss at Any
Distance3

Configuration Best Practices

.

The following MAA best practices are designed to minimize the performance impact of configuring Data Guard
synchronous redo transport to achieve zero data loss protection for a production database.

Set tcp socket buffer size to 3 x BDP

For optimal network throughput the minimum recommended settings for TCP send and receive socket buffer sizes is
a value equal to the bandwidth-delay product (BDP) of the network link between the primary and standby systems.
Settings higher than the BDP may also yield incremental improvement. For example, MAA tests simulating high-
latency, high-bandwidth networks continued to realize small, incremental increases in throughput as TCP send and
receive socket buffer settings were increased to 3xBDP.

BDP is product of the network bandwidth and latency. Socket buffer sizes are set using the Oracle Net parameters
RECV_BUF_SIZE and SEND_BUF_SIZE, so that the socket buffer size setting affects only Oracle TCP
connections. The operating system may impose limits on the socket buffer size that must be adjusted so Oracle can
use larger values. For example, on Linux, the parameters net.core.rmem_max and net.core.wmem_max limit the
socket buffer size and must be set larger than RECV_BUF_SIZE and SEND_BUF_SIZE.

3 http://www.oracle.com/technetwork/database/availability/farsync-2267608.pdf

http://www.oracle.com/technetwork/database/availability/farsync-2267608.pdf�
http://www.oracle.com/technetwork/database/availability/farsync-2267608.pdf�

6 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

For example, if bandwidth is 622 Mbits and latency is 30 ms, then you would calculate the minimum size for the
RECV_BUF_SIZE and SEND_BUF_SIZE parameters as follows:

Bandwidth Delay Product (BDP) = bandwidth x latency

BDP = 622,000,000 (bandwidth) / 8 x 0.030 (latency) = 2,332,500 bytes.

Given this example the optimal send and receive socket buffer sizes are calculated as follows:

Socket buffer size = 3 x BDP

 = 2,332,500 (BDP) x 3

 = 6,997,500 bytes

The size of the socket buffers can be set at the operating system level or at the Oracle Net level. As socket buffer
size requirements can become quite large (depending on network conditions) it is recommended to set them at the
Oracle Net level so that normal TCP sessions, such as telnet, do not use additional memory. Please note that some
operating systems have parameters that set the maximum size for all send and receive socket buffers. You must
ensure that these values have been adjusted to allow Oracle Net to use a larger socket buffer size.

With Oracle Net you can set the send and receive socket buffer sizes globally for all connections using the following
parameters in the sqlnet.ora:

RECV_BUF_SIZE=6997500

SEND_BUF_SIZE=6997500

If you only want the larger buffer sizes for the connections associated with Data Guard transport then we
recommend you configure RECV_BUF_SIZE and SEND_BUF_SIZE in the Oracle Net alias used for transport as
well as in the listener on the standby host. The following shows an example of the send and receive socket buffer
size being set as a description attribute for a particular connect descriptor:

standby =

 (DESCRIPTION=

 (SEND_BUF_SIZE=6997500)

 (RECV_BUF_SIZE=6997500)

 (ADDRESS=(PROTOCOL=tcp)

 (HOST=stby_host)(PORT=1521))

 (CONNECT_DATA=

 (SERVICE_NAME=standby)))

The socket buffer sizes must be configured the same for all databases within a Data Guard configuration. On a
standby side or the receiving side this can be accomplished within either the sqlnet.ora or listener.ora file. In the
listener.ora file, you can either specify the buffer space parameters for a particular protocol address or for a
description.

LISTENER =

 (DESCRIPTION=

 (ADDRESS=(PROTOCOL=tcp)

 (HOST=stby_host)(PORT=1521)

7 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

 (SEND_BUF_SIZE=9375000)

 (RECV_BUF_SIZE=9375000)))

Configure standby redo logs

Online redo logs and standby redo logs should use redo log size = 4GB or redo log size >= peak redo rate/minute x
20 minutes. To extract peak redo rates, please refer to AWR reports during peak workload periods such as batch
processing, quarter or year end processing. It is very important to use peak workload and not averages (averages
can obscure peak redo rates and lead to provisioning insufficient network bandwidth). Table 2 provides a quick
mapping of redo-rate to the minimum recommended redo log size:

TABLE 2: RECOMMENDED REDO LOG SIZE

Peak redo rate according to EM or AWR reports Recommended redo log group size

<= 5 MB/sec 4 GB

<= 25 MB/sec 16 GB

<= 50 MB/sec 32GB

> 50 MB/sec 64 GB

Once the online redo logs have been appropriately sized you should create standby redo logs of the same size. It is
critical for performance that standby redo log groups only contain a single member. In addition, for each redo
log thread (a thread is associated with an Oracle RAC database instance), the number of Standby Redo Logs =
number of Redo Log Groups + 1.

The additional standby redo log eliminates the possibility of a standby database waiting on standby redo log. For
example, if a primary database has two instances (threads) and each thread has three online log groups, then you
should pre-configure 8 standby redo logs on the primary database and each standby database. Furthermore, if the
primary or standby databases are not symmetrical Real Application Clusters (e.g. an 8-node primary Oracle RAC
cluster and a 2-node standby Oracle RAC cluster), then the primary and standby databases should have an equal
number of standby redo logs (based upon the largest cluster in the configuration) and all threads should be
represented. The size of the standby redo logs must always be exactly the same size as the online redo logs on the
primary.

Be sure to place single member standby redo log groups in the fastest available diskgroup. The objective is to have
standby log file write times that are comparable to log file I/O on the primary database optimal performance.

Set SDU size to 65535

With Oracle Net Services it is possible to control data transfer by adjusting the size of the Oracle Net setting for the
session data unit (SDU). Oracle testing has shown that setting the SDU to its maximum value of 65535 can improve
performance of SYNC transport. You can set SDU on a per connection basis using the SDU parameter in the local
naming configuration file (TNSNAMES.ORA) and the listener configuration file (LISTENER.ORA), or you can set the
SDU for all Oracle Net connections with the profile parameter DEFAULT_SDU_SIZE in the SQLNET.ORA file.

8 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

Note that the ASYNC transport uses the new streaming protocol and increasing the SDU size from the default has
no performance benefit for asynchronous configurations.

Configure sufficient resources for optimal system performance

Sufficient resources, in particular for log file I/O on both the primary and standby databases and for network
bandwidth between primary and standby locations, are critical to the performance of a synchronous Data Guard
configuration. While Fast SYNC with Oracle Database 12c will eliminate slow I/O on a standby database from
impacting production database performance, sufficient I/O performance for primary database log file writes and
sufficient network bandwidth to transmit redo volume are still required for optimal results.

Use Fast Sync - SYNC NOAFFIRM

Fast Sync (SYNC NOAFFIRM) enables all sessions waiting for a remote RFS write to proceed as soon as the write
is submitted, not when the write completes. This offers the best performance since it reduces the overall SYNC
remote write wait event.

Consider Exadata for enhanced performance in a zero data loss configuration

Exadata has several features that make it an optimal system for deploying SYNC configurations.

» Smart Flash Logging

»

: The Exadata Smart Flash Cache implements a special algorithm to reduce the latency of
log write I/Os called Exadata Smart Flash Logging. The time to commit user transactions or perform critical
updates is very sensitive to the latency of log writes. Smart Flash Logging takes advantage of the flash cache in
Exadata storage combined with the high speed RAM memory in the Exadata disk controllers to greatly reduce the
latency of log writes and avoid the latency spikes that frequently occur in all storage solutions including flash
based storage solutions. The Exadata Smart Flash Logging algorithms are unique to Exadata and speed up both
primary and standby log writes.
Networking:

»

 Exadata compute nodes have multiple 1GigE and 10GigE network adapters that are preconfigured
for high availability and provide ample bandwidth to handle high transport rates.
Storage Performance

TUNING

: Exadata is a modern architecture featuring scale-out industry-standard database servers,
scale-out intelligent storage servers, state-of-the-art PCI flash storage servers and an extremely high speed
InfiniBand internal fabric that connects all servers and storage. Unique software algorithms in Exadata implement
database intelligence in storage, PCI based flash, and InfiniBand networking to deliver higher performance and
capacity at lower costs than other platforms.

Data Guard performance is directly dependent upon the performance of primary and standby systems, the network
that connects them, and the IO subsystem. Understanding the topology of the Data Guard configuration and its
relevance to Data Guard performance helps eliminate infrastructure weaknesses that are often misattributed to Data
Guard architecture.

Configuration pre-requisites

Data Guard architecture is very streamlined and efficient however like any application, there are reasonable
perquisites needed to achieve satisfactory performance:

Primary Database

» Sufficient CPU utilization for LGWR to post foregrounds efficiently
» Sufficient I/O bandwidth so local log writes maintain low I/O latency during peak rates
» Network interfaces that can handle peak redo rate volumes combined with any other network activity across the

same interface

9 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

» Primary AWR, ASH and OSwatcher data that is gathered for tuning and troubleshooting

Network:

» The round trip network latency (RTT) between primary and standby databases must not be so large that it
impacts the primary database to the point where it compromises performance SLAs. This means that there is a
practical limit to the distance between primary and standby databases since round-trip latency will increase as
distance increases. Oracle is often asked what the maximum latency is that can be supported or whether there is
an equation that can be used to project performance impact. Unfortunately every application will have a different
ability to tolerate network latency. Differences in application concurrency, number of sessions, the transaction size
in bytes, how often sessions commit, and log switch frequency – can cause differences in impact from one
application to the next even if round-trip network latency, bandwidth and log file write i/o performance are all
equal. In general Oracle sees customers having greater success with synchronous redo transport when round
trip network latency is less than 5ms, than when latency is greater than 5ms.

» Sufficient network bandwidth to support peak redo rates (steady state and when resolving gaps) combined with
any other network activity that shares the same network. Please note that your point to point network bandwidth
will be throttled by the network segment, switch, router, interface with the lowest network bandwidth. If you have
10gigE for 90% of your network route and your existing switch or network interface only supports 1 GigE, then
your maximum network bandwidth is 1 GigE.

» Netstat and/or any network monitoring stast should be gathered

Note: The top network problems encountered are inconsistent network response and insufficient network bandwidth.

Standby Database

» Sufficient CPU utilization for RFS (the Data Guard process that receives redo at the standby database) to
efficiently write to standby redo logs.

» Sufficient I/O bandwidth to enable local log writes to maintain low I/O latency during peak rates.
» A network interface that can receive the peak redo rate volumes combined with any other network activity across

the same interface
» Standby statspack, ASH and OSwatcher data should be gathered

Note: The top problem encountered with the standby database is poor standby log write latency due to insufficient
I/O bandwidth. This problem can be mitigated by using Data Guard Fast Sync with Oracle 12c or by using Exadata.

Monitoring system resources

The following provides information on how to monitor system resources on primary and standby hosts.

Monitoring CPU

The uptime, mpstat, sar, dstat, and top utilities allow you to monitor CPU usage. When a system's CPU cores are all
occupied executing work for processes, other processes must wait until a CPU core or thread becomes free or the
scheduler switches a CPU to run their code. If too many processes are queued too often, this can represent a
bottleneck in the performance of the system.

The commands mpstat -P ALL and sar -u -P ALL display CPU usage statistics for each CPU core and averaged
across all CPU cores.

10 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

The %idle value shows the percentage of time that a CPU was not running system code or process code. If the
value of %idle is near 0% most of the time on all CPU cores, the system is CPU-bound for the workload that it is
running. The percentage of time spent running system code (%systemor %sys) should not usually exceed 30%,
especially if %idle is close to 0%.

The system load average represents the number of processes that are running on CPU cores, waiting to run, or
waiting for disk I/O activity to complete averaged over a period of time. On a busy system, the load average reported
by uptime or sar -q should not exceed two times the number of CPU cores. If the load average exceeds four times
the number of CPU cores for long periods, the system is overloaded.

In addition to load averages (ldavg-*), the sar -q command reports the number of processes currently waiting to run
(the run-queue size, runq-sz) and the total number of processes (plist_sz). The value of runq-sz also provides an
indication of CPU saturation.

Determine the system's average load under normal loads where users and applications do not experience problems
with system responsiveness, and then look for deviations from this benchmark over time. A dramatic rise in the load
average can indicate a serious performance problem.

Monitoring memory usage

The sar -r command reports memory utilization statistics, including %memused, which is the percentage of physical
memory in use.

» sar -B reports memory paging statistics, including pgscank/s, which is the number of memory pages scanned by
the kswapd daemon per second, and pgscand/s, which is the number of memory pages scanned directly per
second.

» sar -W reports swapping statistics, including pswpin/s and pswpout/s, which are the numbers of pages per second
swapped in and out per second.

If %memused is near 100% and the scan rate is continuously over 200 pages per second, the system has a
memory shortage.

Once a system runs out of real or physical memory and starts using swap space, its performance deteriorates
dramatically. If you run out of swap space, your programs or the entire operating system are likely to crash. If free or
top indicate that little swap space remains available, this is also an indication you are running low on memory.

The output from the dmesg command might include notification of any problems with physical memory that were
detected at boot time.

Monitoring I/O:

The iostat command monitors the loading of block I/O devices by observing the time that the devices are active
relative to the average data transfer rates. You can use this information to adjust the system configuration to
balance the I/O loading across disks and host adapters.

iostat -x reports extended statistics about block I/O activity at one second intervals, including %util, which is the
percentage of CPU time spent handling I/O requests to a device, and avgqu-sz, which is the average queue length
of I/O requests that were issued to that device. If %util approaches 100% or avgqu-sz is greater than 1, device
saturation is occurring and the storage I/O Bandwidth needs to be augmented by adding disks or storage.

You can also use the sar -d command to report on block I/O activity, including values for %util and avgqu-sz.

The iotop utility can help you identify which processes are responsible for excessive disk I/O. iotop has a similar user
interface to top. In its upper section, iotop displays the total disk input and output usage in bytes per second. In its

11 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

lower section, iotop displays I/O information for each process, including disk input output usage in bytes per second,
the percentage of time spent swapping in pages from disk or waiting on I/O, and the command name. Use the left
and right arrow keys to change the sort field, and press A to toggle the I/O units between bytes per second and total
number of bytes, or O to toggle between displaying all processes or only those processes that are performing I/O.

Monitoring network:

The ip -s link command displays network statistics and errors for all network devices, including the numbers of bytes
transmitted (TX) and received (RX). The dropped and overrun fields provide an indicator of network interface
saturation.

The ss -s command displays summary statistics for each protocol.

To monitor the current rate being transmitted via an interface use the sar –n DEV command.

Assessing database wait events

Once you have verified that you are not bottlenecked on any system or network resources you are ready to assess
database wait events. On the primary database this is done using AWR reports while on the standby database you
will use standby statspack reports (See My Oracle Support Note 454848.1 for complete details on Standby
Statspack). Wait events specific to Data Guard with Oracle Database 11.2 are described in Table 3.

TABLE 3: WAIT EVENTS RELEVANT TO DATA GUARD 11.2

Event Name Description

ARCH wait on ATTACH Monitors the amount of time spent by all archiver processes to spawn a new RFS connection.

ARCH wait on SENDREQ Monitors the amount of time spent by all archiver processes to write archive logs to the local disk as
well as write them remotely.

ARCH wait on DETACH Monitors the amount of time spent by all archiver processes to delete an RFS connection.

LNS wait on ATTACH Monitors the amount of time spent by all LNS processes to spawn a new RFS connection.

LNS wait on SENDREQ Monitors the amount of time spent by all LNS processes to write the received redo to disk as well as
open and close the remote archived redo logs.

LNS wait on DETACH Monitors the amount of time spent by all LNS processes to delete an RFS connection.

LGWR wait on LNS Monitors the amount of time spent by the log writer (LGWR) process waiting to receive messages
from LNS processes.

LNS wait on LGWR Monitors the amount of time spent by LNS processes waiting to receive messages from the log
writer (LGWR) process.

LGWR-LNS wait on channel Monitors the amount of time spent by the log writer (LGWR) process or the LNS processes waiting
to receive messages.

Oracle 11.2 wait events were replaced with the following events provided in Table 4 for all database versions from
12.1.0.1 onward.

12 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

TABLE 4: WAIT EVENTS RELEVANT TO DATA GUARD FROM ORACLE DATABASE 12C ONWARD

Event Name Description

ARCH Remote Write The time (in centi-seconds) that ARCn background processes spend blocked waiting for network
write operations to complete.

ASYNC Remote Write The time (in centi-seconds) for asynchronous streaming RFSWRITE operations.This includes stall
reaps and streaming network submission time. This time is accumulated by TTnn (Redo Transport
Slave) background processes..

Redo Transport Attach The time spent (in centi-seconds) doing Connect, Logon, and RFSATTACH for any network
process.

Redo Transport Close The time spent (in centi-seconds) by ARCn, NSSn, and TTnn processes doing RFSCLOSE and
RFSRGSTR operations.

Redo Transport Detach The time spent (in centi-seconds) doing RFSDETACH and Disconnect for any network process..

Redo Transport Open The time spent (in centi-seconds) by ARCn, NSSn, and TTnn background processes doing
RFSCREAT and RFSANNCE operations.

Redo Transport Ping The time spent (in centi-seconds) by ARCn background processes doing RFSPING operations.

Redo Transport Slave Shutdown The time spent (in centi-seconds) by LGWR doing NSSn and TTnn process shutdown and
termination.

Redo Transport Slave Startup The time spent (in centi-seconds) by LGWR doing NSSn and TTnn process startup and initialization

Redo Writer Remote Sync
Complete

The time spent (in centi-seconds) by LGWR reaping completed network writes to remote
destinations.

Redo Writer Remote Sync Notify The time spent (in centi-seconds) by LGWR issuing network writes to remote destinations.

Remote SYNC Ping The time spent (in centi-seconds) by the LGWR and NSSn background processes doing
synchronous PING operations.

SYNC Remote Write The time spent by LGWR doing SYNC RFSWRITE operations.

Understanding how synchronous transport insures data integrity

The following algorithms ensure data consistency in a Data Guard synchronous configuration:

» LGWR redo write on the primary database and the Data Guard NSS network redo write are identical
» The Data Guard Managed Recovery Process (MRP) at the standby database can NOT apply redo unless the

redo has been written to the primary's online redo log with the only exception being during a Data Guard failover
operation (primary is gone). In addition to shipping redo synchronously, NSS and LGWR also exchange
information regarding the safe redo block boundary that standby recovery can apply up to from its standby redo
logs. This prevents the standby from applying redo it may have received, but which the primary has not yet
acknowledged as committed to its own online redo logs.

The possible failure scenarios include:

» If primary database's LGWR cannot write to online redo log, then LGWR and instance will crash. Instance or
crash recovery will recover to the last committed transaction in the online redo log and roll back any uncommitted
transactions. The current log will be completed and archived.

» On the standby, we complete the partial standby redo log with the correct value for the size to match the
corresponding online redo log. If any redo blocks are missing from the SRL, we ship these over (without
reshipping the entire redo log).

» If the primary database crashes resulting in an automatic or manual zero data loss failover, then part of the Data
Guard failover operation will do "terminal recovery" and read and recover the current standby redo log. Once

13 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

recovery completes applying all the redo in the SRLs, the new primary database comes up and it archives the
newly completed log group. All new and existing standby databases will discard any redo in its online redo logs,
flashback to consistent SCN and only apply the archives coming from the new primary database. Once again the
Data Guard environment is in sync with the (new) primary database.

Assessing performance

When assessing performance in a SYNC environment it is important to know how the different wait events relate to
each other. The impact of enabling SYNC will vary between applications. To understand why consider the following
description of work LGWR performs when a commit is issued:

 1) Foreground process posts LGWR for commit ("log file sync" starts). If there are concurrent commit
 requests queued, LGWR will batch all outstanding commit requests together resulting in a continuous
 strand of redo.

 2) LGWR waits for CPU

 3) LGWR starts redo write ("redo write time" starts)

 4) For RAC, LGWR broadcasts the current write to other instances

 5) After preprocessing, if there is a SYNC standby, LGWR starts the remote write (“SYNC remote write” starts)

 6) LGWR issues local write ("log file parallel write")

 7) If there is a SYNC standby, LGWR waits for the remote write to complete

 8) After checking the I/O status, LGWR ends "redo write time / SYNC remote write"

 9) For RAC, LGWR waits for the broadcast ack

10) LGWR updates the on-disk SCN

11) LGWR posts the foregrounds

12) Foregrounds wait for CPU

13) Foregrounds ends "log file sync"

We recommend the following approach to assess performance:

For batch loads the most important factor is to monitor the elapsed time as most of these processes must be
completed in a fixed period of time. The database workloads for these operations are very different than the normal
OLTP workloads, for example the size of the writes can be significantly larger, so using log file sync averages does
not give an accurate view / comparison.

For OLTP workloads we recommend monitoring the volume of transactions per second (from AWR) and the redo
rate (redo size per second) from the AWR report. This gives a clear picture of the application throughput and how it
is impacted by enabling SYNC.

How not to assess the impact of enabling SYNC:

Typically we see that the first place people look when assessing the impact of enabling SYNC is at the log file sync
wait event on the primary. If the average log file sync wait before enabling SYNC was 3ms and after was 6ms then
the assumption is that SYNC has impacted performance by one hundred percent. Oracle does not recommend

14 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

using log file sync wait times to measure the impact of SYNC since the averages can be very deceiving and the
actual impact of SYNC on response time and throughput may be much lower than the event indicates.

When a user session commits LGWR will go through the process of getting on the CPU, submitting the I/O, waiting
for the I/O to complete, and then getting back on the CPU to post foreground processes that their commit has
completed. This whole time period is covered by the ‘log file sync’ wait event. While LGWR is performing its work
there are, in most cases, other sessions committing that must wait for LGWR to finish before processing their
commits. The size and number of sessions waiting are determined by how many sessions an application has and
how frequently those sessions commit. We generally refer to this batching up of commits as application
concurrency.

For example, let’s assume that it normally takes 0.5ms to perform log writes (log file parallel write), 1ms to service
commits (log file sync), and on average we are servicing 100 sessions for each commit. If there was an anomaly in
the storage tier and the log write I/O for one commit took 20ms to complete then we could have up to 2,000
sessions waiting on log file sync while there would only be 1 long wait attributed to log file parallel write. Having a
large number of sessions waiting on one long outlier can greatly skew the log file sync averages.

The output from v$event_histogram for the log file sync wait event for a particular period in time is shown in Table 5.

TABLE 5: FROM V$EVENT_HISTOGRAM FOR THE LOG FILE SYNC WAIT EVENT

Milliseconds Number of Waits Percent of Total Waits

1 17610 21.83%

2 43670 54.14%

4 8394 10.41%

8 4072 5.05%

16 4344 5.39%

32 2109 2.61%

64 460 0.57%

128 6 0.01%

The output shows that 92% of the log file sync wait times are less than 8ms with the vast majority less than 4ms
(86%). Waits over 8ms, or what we call outliers, only comprise of 8% overall but due to the number of sessions
waiting on those outliers (due to batching of commits) the averages get skewed. This skewing makes using log file
sync average waits times as a metric for assessing the impact of SYNC misleading.

What is causing the outliers?

With synchronous transport any disruption to the I/O on the primary or standby, or spikes in network latency can
also cause high log file sync outliers. We typically see this when the standby system has an inferior I/O subsystem
from that of the primary. Often time’s customers will host multiple databases such as dev and test on standby
systems that can impair IO response. It is important to monitor I/O by using iostat as described above to determine if
disk are reaching maximum IOPS as this will affect the performance of SYNC writes.

 Perhaps one of the biggest causes of outliers is frequent log switches. Consider what occurs on the standby when a
log switch on the primary occurs.

15 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

1. RFS on the standby must finish updates to the standby redo log header

2. RFS then switches into a new standby redo log with additional header updates

3. Switching logs forces a full checkpoint on the standby. This causes all dirty buffers in the buffer cache to be
 written to disk causing a spike in write I/O. In a non-symmetric configuration where the standby storage
 subsystem does not have the same performance as the primary database, this will result in higher IO latencies.

4. The previous standby reo log must be archived increasing both read and write I/O.

The chart in Figure 3 was created using a heavy insert workload producing about 30MB/sec. It displays the time in
milliseconds for each remote write for time periods that included a log switch and shows the increase is remote write
times that occur at each log switch.

Figure 3: Log Switch Affect on Remote Message Times

What else does enabling SYNC affect?

When SYNC is enabled we introduce a remote write (RFS write to a standby redo log) in addition to the normal local
write for commit processing (unless using Fast Sync with Oracle Database 12c). This remote write, depending on
network latency and remote I/O bandwidth, can make commit processing increase in time. Since commit processing
is taking longer that means that we will see more sessions waiting on LGWR to finish its work and begin work on
their commit request, which is to say that application concurrency has increased. Increased application concurrency
can be seen by analyzing database statistics and wait events. Consider the example in table 6.

16 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

TABLE 6: AFFECT OF SYNC TRANSPORT INCREASING APPLICATION CONCURRENCY

SYNC
Redo
Rate

Network
Latency

TPS from
AWR

log file
sync
avg. ms

Log file
parallel
write
avg. mis

RFS
random
I/O

SYNC
remote
write
avg. ms

Redo
write size
(kb)

Redo
writes

Defer 25MB 0 5,514.94 0.74 0.47 NA NA 10.58 2,246,356

Yes 25MB 0 5,280.20 2.6 .51 .65 .95 20.50 989,791

Impact 0 - -4% +251% +8.5% NA NA +93.8% -55.9%

In the above example we see that enabling sync reduced the number of redo writes but increase the size of each
redo write. Since the size of the redo write has increased we should expect the time spent doing the I/O (both local
and remote) to increase. We should expect ‘log file sync’ wait time to be higher since we are doing more work per
wait. However, at the application level the impact to the transaction rate or the transaction response time might
change very little as we are servicing more sessions per commit. This is why it is important to measure the impact of
SYNC at the application level and not depend entirely on database wait events (more on that below). It is also a
perfect example of why log file sync wait event is a very misleading indicator of actual application impact.

How to assess SYNC performance with Oracle Database 11.2

To look at performance we recommend calculating the time spent for local redo writes latency, average redo write
size per write, and overall redo write latency. You can use the following wait events to do this:

» local redo write latency = 'log file parallel write'
» average redo write size per write = ‘redo size’ / ‘redo writes’
» overall redo write latency (both local and remote) = 'redo write time' / 'redo writes' * 10
» average commit latency seen by foregrounds = 'log file sync'
» transaction per second
» redo rate

Stats from an AWR report from an Oracle 11.2 database are provided in Table 7. SYNC transport was enabled to a
local standby with 1ms network latency to compare the performance impact to a baseline with SYNC disabled:

TABLE 7: ASSESSING SYNC PERFORMANCE WITH ORACLE DATABASE 11.2

Metric Baseline – no SYNC SYNC Impact

redo rate (K/sec) 3,689 3,670 no change

log file sync 0.43 2.45 +469%

log file parallel write 0.30 0.30 no change

TPS 438 429 -2.1%

overall write latency 0.42 1.87 +345%

total redo size 3,418,477,080 3,450,849,356 +0.9%

redo writes 426,201 396,199 -7.0%

redo write size 8,020 8,709 +8.6%

17 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

In this example we see that enabling SYNC impacted overall transaction per second as seen by the application by
2% while the database redo rate declined by less than 1%. We also see that the number of redo writes decreased in
number but increased in size. This is due to concurrency, or the increases in the number of sessions being serviced
by any one commit or redo write. The average time spent writing to the standby was 1.87ms while spending on
average less than half a millisecond on local writes. This means that of the 1.87ms for the remote write we spent
1ms on the network leaving approximately.87ms for the I/O to complete into the standby redo log.

How to assess SYNC performance with Oracle Database 12c

To look at performance we recommend calculating the time spent for local redo writes latency, average redo write
size per write, and overall redo write latency. You can use the following wait events to do this:

» local redo write latency = 'log file parallel write'
» remote write latency = ‘SYNC remote write’
» average redo write size per write = ‘redo size’ / ‘redo writes’
» average commit latency seen by foregrounds = 'log file sync'

Stats from an AWR report from an Oracle 12c database are provided in Table 8. SYNC transport was enabled to a
local standby with 1ms network latency to compare the performance impact to a baseline with SYNC disabled.

TABLE 8: ASSESSING SYNC PERFORMANCE WITH ORACLE DATABASE 12C

Metric Baseline – no SYNC SYNC Impact

redo rate (MB/s) 25 25 no change

log file sync 0.68 4.60 +576%

log file parallel write 0.57 0.62 +8.8%

TPS 7,814.92 6224.03 -20.3%

RFS random I/O NA 2.89 NA

SYNC remote write avg. ms NA 3.45 NA

redo writes 2,312,366 897,751 -61,2%

redo write size (kb) 10.58 20.50 +93.8%

In the above example we see that log file sync waits averages increased dramatically after enabling SYNC. While
the local writes remained fairly constant the biggest factor in increasing log file sync was the addition of the SYNC
remote write. Of the SYNC remote write we know the network latency is zero so focusing on the remote write into
the standby redo log shows an average time of 2.89ms. This was an immediate red flag given that primary and
standby were using the same hardware and the remote write should be in line with the local write times.

In the above example it was determined that the standby redo logs (SRLs) had multiple members and they were
placed into a slower performing diskgroup. After reducing to a single member and placing into a fast diskgroup the
test was repeated yielding the results shown in Table 9.

18 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

TABLE 9: SYNC PERFORMANCE AFTER REDUCING SRLS TO SINGLE MEMBER AND PLACING ON FAST DISKGROUP

Metric Baseline – no SYNC SYNC Impact

redo rate (MB/s) 25 25 no change

log file sync 0.67 1.60 +139%

log file parallel write 0.51 0.63 +23.5%

TPS 7714.36 7458.08 -3.3%

RFS random I/O NA .89 NA

SYNC remote write avg. ms NA 1.45 NA

redo writes 2,364,388 996,532 -57.9%

redo write size (kb) 10.61 20.32 +91.5%

Due to faster I/O rates on the standby the overall log file sync waits were reduced which resulted in a higher
application transaction per second rate.

Diagnosing High Log File SYNC Waits

When a long log write occurs there is a message similar to the following written to the LGWR trace file on the
primary database:

Warning: log write elapsed time 163ms, size 18KB

By default Oracle only prints warnings for long log writes that are longer than 500ms. You can lower the threshold
for these messages by using the following underscore parameter:

_long_log_write_warning_threshold=<some number of milliseconds>

Using the timestamps associated with the above warning enables you to diagnose whether the standby is the root
cause by tracing the sending and receiving of redo. Set the following tracing:

» On primary and standby set event 16410 (dynamic): alter system set 16410 trace name context forever, level 16
» On the standby determine the pid of RFS by querying v$managed_standby and set event 10046 level 12.

With the above tracing set you can trace the time spent for each remote log write by tracking the message id. For
example, for each remote log write we print the following message and place the sending timestamp below the
message:

Client sending SQLNET request data [kpurcs] oper='Write' flag=67111042 thrd=1

seq=1584 msgid=117468

*** 2014-12-02 08:46:34.598 5837 krsu.c

On the standby side we can see the receipt of that remote log write by looking for the same msgid identified above:

... Server received SQLNET data [krsr_rfs_dsp] oper='Write' flag=67111042 thrd=1

seq=1584 msgid=117468

*** 2014-12-02 08:46:34.598 826 krsr.c

19 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

Once RFS has completed the write into the SRL, RFS sends an ack back to the primary shown by the following
message:

... Server finished processing SQLNET data [krsr_rfs_dsp] oper='Write' flag=67111042

thrd=1 seq=1584 msgid=117468

*** 2014-12-02 08:46:34.761 1459 krsr.c

On the primary you can see NSS receiving the ack from RFS and the following message with the timestamp printed
above the message:

*** 2014-12-02 08:46:34.761 6058 krsu.c

... Client received SQLNET call [kpurcs] response oper='Write' flag=67111042 thrd=1

seq=1584 msgid=117468

EXAMPLES

The following shows and example of tracing and how to analyze a long log write that took 163ms:

From the NSS trace file we see that almost all of the 163ms was spent either on the network or within RFS:

Client sending SQLNET request data [kpurcs] oper='Write' flag=67111042 thrd=1

seq=1584 msgid=117468

*** 2014-12-02 08:46:34.598 5837 krsu.c

*** 2014-12-02 08:46:34.761 6058 krsu.c

... Client received SQLNET call [kpurcs] response oper='Write' flag=67111042 thrd=1

seq=1584 msgid=117468

With event 10046 as well at 16410 enabled on the RFS we see the following for the above msgid:

... Server received SQLNET data [krsr_rfs_dsp] oper='Write' flag=67111042 thrd=1

seq=1584 msgid=117468

*** 2014-12-02 08:46:34.598 826 krsr.c

WAIT #0: nam='RFS random i/o' ela= 298 p1=0 p2=0 p3=2147483647 obj#=-1

tim=1417535194598944

WAIT #0: nam='RFS write' ela= 162381 p1=0 p2=0 p3=0 obj#=-1 tim=1417535194761203

... Server finished processing SQLNET data [krsr_rfs_dsp] oper='Write' flag=67111042

thrd=1 seq=1584 msgid=117468

*** 2014-12-02 08:46:34.761 1459 krsr.c

20 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

So the above elapsed time for RFS write accounts for almost all of the 163ms.

The next example shows time being spent on the network for a 138ms long log writes:

From the NSS trace file we see that almost all of the 138ms was spent either on the network or within RFS:

Client sending SQLNET request data [kpurcs] oper='Write' flag=67111042 thrd=2

seq=1311 msgid=124705

*** 2014-12-02 08:46:49.879 5837 krsu.c

*** 2014-12-02 08:46:50.017 6058 krsu.c

... Client received SQLNET call [kpurcs] response oper='Write' flag=67111042 thrd=2

seq=1311 msgid=124705

On the RFS side we see it didn’t receiving the msgid until almost 170ms has expired:

... Server received SQLNET data [krsr_rfs_dsp] oper='Write' flag=67111042 thrd=2

seq=1311 msgid=124705

*** 2014-12-02 08:46:50.016 826 krsr.c

WAIT #0: nam='RFS random i/o' ela= 360 p1=0 p2=0 p3=2147483647 obj#=-1

tim=1417535210017013

WAIT #0: nam='RFS write' ela= 246 p1=0 p2=0 p3=0 obj#=-1 tim=1417535210017052

... Server finished processing SQLNET data [krsr_rfs_dsp] oper='Write' flag=67111042

thrd=2 seq=1311 msgid=124705

*** 2014-12-02 08:46:50.017 1459 krsr.c

Data Guard Fast Sync
Fast Sync is a new Data Guard capability available with Oracle Database 12c. Fast Sync enables use of the
destination parameter NOAFFIRM which specifies that the standby acknowledge receipt of redo without waiting for
the write to the standby redo log file to complete. Fast Sync can improve application response time in a SYNC
configuration by removing remote I/O from the total round trip time. It also prevents fluctuations and outliers in
standby I/O performance from impacting application response time. Fast Sync can make it practical to increase the
distance between the primary and any Data Guard synchronous destination to provide greater geographic
protection.

Oracle performance testing on Exadata demonstrated that primary database throughput increased by 4% when Fast
Sync was configured. Ironically, the fast I/O on an Exadata system using Exadata Smart Flashlogs results in more
modest performance advantages. A more substantial performance advantage is seen for production databases
deployed on systems having slower I/O. In a performance test using Oracle Databases on virtual machines
deployed on commodity x86 with NAS storage, for example, Fast Sync resulted in a 12% increase in primary
database throughput (Figure 4). This is due to the fact that disk I/O is a larger percentage of total round-trip time in
the virtual machine example.

21 | BEST PRACTICES FOR SYNCHRONOUS REDO TRANSPORT

Figure 4: Performance Comparison: FASTSYNC vs. SYNC

Conclusion
Data Guard and Active Data Guard synchronous redo transport provides zero data loss protection during database,
cluster, and site outages as well as natural disasters and other events that can impact a widespread geography.
Synchronous transport combined with fast database failover (initiated manually by the administrator or automatically
using Data Guard Fast-Start Failover4

) is the only Oracle replication solution that provides zero data loss protection,
disaster recovery, and high availability. By definition, any synchronous replication solution will impact production
database performance. Data Guard’s unique integration with the Oracle Database combined with MAA best
practices described in this paper provides the best possible data protection with optimal performance.

4 http://docs.oracle.com/database/121/DGBKR/sofo.htm#i1027843

http://docs.oracle.com/database/121/DGBKR/sofo.htm#i1027843�

Oracle Corporation, World Headquarters Worldwide Inquiries
500 Oracle Parkway Phone: +1.650.506.7000
Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are

Authors: Andy Steinorth, Michael Smith
Contributors: Joe Meeks, Lawrence To

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

	Introduction 1
	Data Guard Synchronous Transport – an Overview 2
	Synchronous Transport Performance 3
	Synchronous Transport Enhancements 4
	Oracle Database 11g Release 2 4
	Oracle Database 12c 5
	Configuration Best Practices 5
	Set tcp socket buffer size to 3 x BDP 5
	Configure standby redo logs 7
	Set SDU size to 65535 7
	Configure sufficient resources for optimal system performance 8
	Use Fast Sync - SYNC NOAFFIRM 8
	Consider Exadata for enhanced performance in a zero data loss configuration 8
	TUNING 8
	Understanding how synchronous transport insures data integrity 12
	Assessing performance 13
	How to assess SYNC performance with Oracle Database 11.2 16
	How to assess SYNC performance with Oracle Database 12c 17
	Diagnosing High Log File SYNC Waits 18
	Data Guard Fast Sync 20
	Conclusion 21
	Introduction
	Data Guard Synchronous Transport – an Overview
	Synchronous Transport Performance

	Synchronous Transport Enhancements
	Oracle Database 11g Release 2
	Oracle Database 12c

	Configuration Best Practices
	Set tcp socket buffer size to 3 x BDP
	Configure standby redo logs
	Set SDU size to 65535
	Configure sufficient resources for optimal system performance
	Use Fast Sync - SYNC NOAFFIRM
	Consider Exadata for enhanced performance in a zero data loss configuration

	TUNING
	Understanding how synchronous transport insures data integrity
	Assessing performance
	How to assess SYNC performance with Oracle Database 11.2
	How to assess SYNC performance with Oracle Database 12c
	Diagnosing High Log File SYNC Waits

	Data Guard Fast Sync
	Conclusion

