ORACLE

Oracle® Database
Performance Tuning Guide

11gRelease 2 (11.2)
E41573-04

June 2014

Oracle Database Performance Tuning Guide, 11g Release 2 (11.2)
E41573-04

Copyright © 2000, 2014, Oracle and/or its affiliates. All rights reserved.
Primary Authors: Immanuel Chan, Lance Ashdown

Contributors: Aditya Agrawal, Hermann Baer, Vladimir Barriere, Mehul Bastawala, Eric Belden, Pete
Belknap, Supiti Buranawatanachoke, Sunil Chakkappen, Maria Colgan, Benoit Dageville, Dinesh Das, Karl
Dias, Kurt Engeleiter, Marcus Fallen, Mike Feng, Leonidas Galanis, Ray Glasstone, Prabhaker Gongloor,
Kiran Goyal, Cecilia Grant, Connie Dialeris Green, Shivani Gupta, Karl Haas, Bill Hodak, Andrew
Holdsworth, Hakan Jacobsson, Shantanu Joshi, Ameet Kini, Sergey Koltakov, Vivekanada Kolla, Paul Lane,
Sue K. Lee, Herve Lejeune, Ilya Listvinsky, Bryn Llewellyn, George Lumpkin, Mughees Minhas, Gary Ngai,
Mark Ramacher, Yair Sarig, Uri Shaft, Vishwanath Sreeraman, Vinay Srihari, Randy Urbano, Amir Valiani,
Venkateshwaran Venkataramani, Yujun Wang, Graham Wood, Khaled Yagoub, Mohamed Zait, Mohamed
Ziauddin

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PREFACE ... XV
AUAIEIICE ...ttt ettt ettt te et e e te e b e eseessesae e aeersesbeessesbeess e teessasseerseeseensesrsenbesreebenreans XV
Documentation AcCesSSIDIlitycccooiiiiiiiiiiiiiii e XV
Related DOCUIMENEScoveuirieuiiiieieieieietertet ettt ettt sttt teb et sttt sttt s et e st st et sbe st e be st steneetenestenesseneas XV
CONVEINTIONS ..ttt ettt ettt et ettt e bt et e st e e a e e st e et e sueembe s bt e besbeeabesbe et e ebtenbeebeenbesbeenbesbeensesbeens XVi

What's New in Oracle Database Performance Tuning Guide?cccooeeeenee. XVii
Oracle Database 11¢ Release 2 (11.2.0.4) New Features in Oracle Database Performance............ Xvii
Oracle Database 11g Release 2 (11.2.0.2) New Features in Oracle Database Performance............ Xvii
Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle Database Performance........... xviii

Partl Performance Tuning

1 Performance Tuning Overview

Introduction to Performance TUNINg...........ccccocooiiiiniiiiiiiii e 1-1
Performance PIanningcoccoiiiiiiiicc e 1-1
INStANCE TUNINE ...cvovviiiiiicic e 1-1
SOQL TUNINE ...ttt ettt 1-4

Introduction to Performance Tuning Features and Tools.................ccccccevniiiniiiiiniinn, 1-4
Automatic Performance Tuning Features ..o 1-5
Additional Oracle Database TOOIS..........cccccciviiiriiiiiiiiiiiic e 1-6

Part Il Performance Planning

2 Designing and Developing for Performance

Oracle Methodology ... 2-1
Understanding Investment Options.............ccccoovviiiiiiiii s 2-1
Understanding Scalability ... 2-2
What is Scalability?coooiiiriie s 2-2
System SCalabilitycooiiieiiiiic e 2-3
Factors Preventing Scalability ... 2-4
System ArchiteCture ... 2-5
Hardware and Software COMPONENLSccuoiiuiieiiiiiieiecee e 2-5
Configuring the Right System Architecture for Your Requirements.............cccccoeuvvvunvniniincnnce. 2-7

Application Design Principles............ccccoooviiiiiiiiiiiiiiiic s 2-9

Simplicity In Application Design..........cccoeuiioiiiiiiiiiiiii 2-10
Data MOAEINGc.cviuiiiiiiiiiicceceeec et 2-10
Table and Index DeSIgN..........c.cuiruiiiiiiicc 2-10
USING VIEWS ..ottt bbb 2-12
SQL Execution EffiCIencyccoccciiiiiiiiiecceececieciencceieee e 2-13
Implementing the APPLCAtioNccoceviiiiiiiiiiiiiic s 2-14
Trends in Application Development.............occcioiiiriiiiiiicicicce e 2-16
Workload Testing, Modeling, and Implementationccooiiiinniinnie, 2-16
SIZING DAta ..o 2-17
Estimating Workloadsc.oiii 2-17
ApPPlication MOAELNGc.ccueuiiiiiiiiiiiiiiiiiceicceeeeee e 2-18
Testing, Debugging, and Validating a Design...........ccccooeeieiiiiiiiiciiiccc e, 2-18
Deploying New Applications ..o 2-19
ROIOUE SEFAtEZIES ...ttt 2-19
Performance CheckIist..........ccciiiiiiiiiiii s 2-20

3 Performance Improvement Methods

The Oracle Performance Improvement Method ..., 3-1
Steps in The Oracle Performance Improvement Method..............ccoiii 3-2
A Sample Decision Process for Performance Conceptual Modeling..........c.cccccccueeueinuinennnes 3-3
Top Ten Mistakes Found in Oracle Systems............cccoiieiiiiiiieiiiiiccc 3-4
Emergency Performance Methods ... 3-6
Steps in the Emergency Performance Method...........cccccciiiiiiiiiiiiiccccccecceeeennes 3-6

Part lll Optimizing Instance Performance

4 Configuring a Database for Performance

Performance Considerations for Initial Instance Configuration...............ccccccooviiiiiiinn. 4-1
Initialization Parameters ... 4-1
Configuring UNdO SPace.......c.cccuiuiiiiiiiiiiiiiiiciicice s 4-3
Sizing Redo LOG FILESc.ciiiiiiicicec e 4-3
Creating Subsequent Tablespaces...........c.ccviiiiiiiiiiiiiiiiii 4-4

Creating and Maintaining Tables for Optimal Performancecccccccceiiiiiiiinnncnnnne, 4-5
Table COMPTESSIONcvviiiiiiiiieree et 4-5
Reclaiming Unused SPace..........ccuoviiiiiiiiiiici 4-6
INAexXing Datac.ccceuiiiiiiiiiiiiii e 4-7

Performance Considerations for Shared Serverscccooooiiiiiniiiii e 4-7
Identifying Contention Using the Dispatcher-Specific Views ..o, 4-8
Identifying Contention for Shared Servers...........ccccccveiiiiiiiiiiiiniiiiiiinrccc, 4-9

5 Automatic Performance Statistics

Overview of Data Gathering..............cccoooiiiiiiiiii s 5-1
Database StatiStiCsccoveuiuiuiiirriieceee s 5-2
Operating System StatiSticsccooirieieiiiiiciecc 5-4
Interpreting StatistiCs. ... 5-7

Overview of the Automatic Workload Repository ..., 5-8

SNAPSNOLS.......ceii s 5-9
BaSELINESovviiit s 5-9
Adaptive Thresholds ... s 5-10
Space CONSUMPHIONcviiiiitiiciiicict et 5-12
Managing the Automatic Workload Repositorycccooiiiiniiiiinniiicce, 5-12
Managing SNAPShOts..........coiiii 5-13
Managing Baselinesccocoiiuiiiioiiiiicici e 5-14
Managing Baseline Templates..........cccccocciuiiiiiiiiiiiiiiicccceeee e 5-17
Transporting Automatic Workload Repository Dataccoceueieiiiciiiiiiiciicc 5-19
Using Automatic Workload Repository VIews ..o 5-21
Generating Automatic Workload Repository Reportscccccceccuccciicecicccecicennee 5-22
Generating Automatic Workload Repository Compare Periods Reportscccccevvvvennnene. 5-28
Generating Active Session History RepOrts..........ooeiiiiiiiiiiiiiiiccccccce 5-34
Using Active Session History Reports ..o 5-38

6 Automatic Performance Diagnostics

Overview of the Automatic Database Diagnostic MONitor ..., 6-1
ADDM ANQALYSISocuiviiiiiieieiicicie e 6-2
Using ADDM with Oracle Real Application Clusters............ocoooevnioiieioioiiiciiiccccce 6-3
ADDM ANalysis RESULLSc.cceuiiiuiiiiiiiiiiiicccce e 6-4
Reviewing ADDM Analysis Results: Example..........cocoooooiiiiiicice, 6-5

Setting Up ADDM ...t 6-5

Diagnosing Database Performance Problems with ADDM............ccccocoiiiniiinnniiicn, 6-6
Running ADDM in Database Mode...........cccccoiiiiiiiiieicc 6-7
Running ADDM in Instance Mode...........ccocuiiiiiiiiiccccici e 6-7
Running ADDM in Partial Mode.........cccccciiiiiiiiiiiiiiiiccccreeereeeee e 6-8
Displaying an ADDM RePOTt........ccoiuiiiiiiiiiiiiicicie it 6-8

Views with ADDM Information...........ccocovviininiiiiiii s 6-9

7 Configuring and Using Memory

Understanding Memory Allocation ISSUEScccooviiiiiiiiiininnininii e 7-1
Oracle Memory Cachesc.c.cccuiiiiiiiiiiiccce e 7-2
Automatic Memory Management ..o 7-2
Automatic Shared Memory Managementcccceeuieeieiniicininiiceee e 7-2
Dynamically Changing Cache SiZes.........ccccovvirriiiirirnnirirrcrccre e 7-3
Application Considerations...........cceeuiiiiiiiiiiniiiiiiiici s 7-5
Operating System Memory USe.........ccooiiiiiiiiiiiininiciiiccics e 7-5
Iteration During Configuration............ccoiiiiiiiiiiiiceeceeeeee et eeeenes 7-6

Configuring and Using the Buffer Cache............ccccocoiiiiiiiii 7-6
Using the Buffer Cache Effectively ... 7-7
Sizing the BUffer Cachiec.ccccciiiiiiiiccccc e 7-7
Interpreting and Using the Buffer Cache Advisory Statisticscocooeiireiiiiiciina, 7-10
Considering Multiple Buffer POOLS..........ccccccciiiiiiiiiiiiiiicccccces 7-11
Buffer Pool Data in VEDB_CACHE_ADVICE ...ttt eeee e eeeereesenees 7-13
Buffer Pool Hit RatiOScoviiiiiiiiiiiiiiiiccic s 7-13

vi

Determining Which Segments Have Many Buffers in the Pool.............cccccoeveinininiiinnnnnnn 7-13

KEEP POOL....ociiiiiiiiic s 7-15
RECYCLE POOL ...ttt 7-15
Configuring and Using the Shared Pool and Large Poolccocooiiiiiiiiiiiicinns 7-16
Shared Pool CONCEPLS........cccuiiiicieiei s 7-17
Using the Shared Pool EffeCtiVely ... 7-19
Sizing the Shared PoOl............coi 7-22
Interpreting Shared Pool Statisticscccoeeieiiiiiiiiiiic 7-27
Using the Large POl ... 7-28
Using CURSOR_SPACE_FOR_TIME........ccccccoceiniiniiiiiniiisnssssnnns 7-31
Caching SesSiON CUISOTScviiiueieieiiicie sttt e 7-31
Configuring the Reserved POOL..........cccccociiiiiiiiiiiccecceee s 7-33
Keeping Large Objects to Prevent AGINgccooooiiiiiiiiiiiii 7-35
Sharing Cursors for Existing Applications............cccccueueieiinieiiiicicie e, 7-36
Maintaining CoNNECHONS...........ccciviiiiiiiiiiii s 7-38
Configuring and Using the Redo Log Buffer ... 7-38
Sizing the Log BUffer ... 7-39
LOg BUffer StatiStiCsc.coviiuiuiiiiiieiciccicicccecie et 7-39
PGA Memory Managementccooooovoiiiiiiiiiiiiieecce ettt 7-39
Configuring Automatic PGA MemOIYccocoeuiiiiiiiiiicece e 7-41
Configuring OLAP_PAGE_POOL_SIZEcccocoiiiiiereceeeeeeeeeeeeeeeee e 7-53
Managing the Server and Client Result Caches.............ccccoovviiiiiiiiiii 7-53
Managing the Server Result Cache.............ocooooiiiiiiiiiiii 7-54
Managing the Client Result Cache ... 7-57
Specifying Queries for Result Caching ..o, 7-59
Requirements for the Result Cacheoooeiiiiiiiiiii e 7-62
Accessing Result Cache INfOrmation.............ccciieiiiiiieiicieeecee s 7-63

I/0 Configuration and Design

N o 7o 118 A L TSR PRUP 8-1
I/O Configuration............cooiiiiiiii s 8-2
Lay Out the Files Using Operating System or Hardware Striping...........cccocevvvivvvnnnnennncn. 8-2
Manually Distributing I/ Oc.ccccciiiiiiiiiiiiireecnrrerrreer e 8-5
When to Separate Files ... 8-5
Three Sample Configurations...........ccccciiiuiiiiiiiiiiiii e 8-7
Oracle Managed FALEScccciiiiiiiiccceecceeee et 8-8
Choosing Data BlOCK SiZecouiiiiiiiiiiii 8-9
I/O Calibration Inside the Database..............c.cccocveiiiiiiiiieiiciieeeeceeeeeee ettt 8-10
Prerequisites for I/O CalibIation...........ccccciiiuiiiimiiiiiieeiceeeeeere et 8-10
Running I/O Calibrationcciiiiiiiiiiiiiiiiiicci s 8-11
I/O Calibration with the Oracle Orion Calibration Toolcccccoiririrerieieecceeeeeeee e 8-12
Introduction to the Oracle Orion Calibration ToOlccccevierierierieieinieieeee e 8-12
Getting Started with OFiON ... 8-14
Orion INPUt FILESc.cuiiiiiiiiiiiiiic s 8-15
OFION PATQIMELETSvecviieeieieeiieieetete ettt ettt et et e s st st e sseestesseessesseessesseensesseensesseessesseensensenn 8-15
Orion OUtPUL FIleScuiviviiiiiiiiiii s 8-20
Orion TroubleShOOtINEccccuiuiiiiiiiiiic s 8-23

10

Managing Operating System Resources

Understanding Operating System Performance Issues..............cccccoevninnniinnnnninne, 9-1
Using Operating System Caches............ccoiiiiiiiiiiiciiicccceccee e 9-2
MEMOTY USAGZE......cueiieietiiiiietctece ettt 9-3
Using Operating System Resource Managers...........ccococeueueuiiiieiciiinincicieiecieceee e 9-4

Resolving Operating System ISSUEScccouiiiiiiiiiiiiiiiii s 9-5
Performance Hints on UNIX-Based Systems...........cccoeiiiiiiiiiiiiniiiiiiccccccns 9-5
Performance Hints on Windows SysStems ..., 9-5
Performance Hints on HP OpenVMS SYStems........c.ccccceueuiiimiueiiiciieiieieeciceieeeeeeeeeeeeeeeeeeieeeenes 9-6

Understanding CPU...........ccccoooiiiiiiiiiiii s 9-6

Resolving CPU ISSUES.........ccoiiiiiiiiiiiiiiicc s 9-7
Finding and Tuning CPU Utilizationcccccciiiiiiiiiiiiiicceecceeeeeeeeeeeeeeeeeeeeeeeeeeene 9-8
Managing CPU Resources Using Oracle Database Resource Managercccoceuevenunen. 9-10
Managing CPU Resources Using Instance Cagingcccceoeueveueieieieieiiicicieeecceee 9-11

Instance Tuning Using Performance Views

Instance TUNING StePs........c.cooiiiiiiiiii s 10-1
Define the Problemcccoiiiiiiiiiiceeceeeeee e 10-2
Examine the HOst SyStem ... 10-3
Examine the Oracle Database Statisticsccccccvviviiiiiiniiiiie 10-6
Implement and Measure Change...........cocoevvvrirrnninnnrrre s 10-10

Interpreting Oracle Database Statisticsccoooiiiiiiiiiii 10-11
Examine Loadccccovviiiiiiiiiiiiiiiii e 10-11
Using Wait Event Statistics to Drill Down to Bottlenecks............cooooiiiiiiiiiiccicccnnn. 10-12
Table of Wait Events and Potential Causes...........cccocovveviviiiiiniiiniiiiiiiae 10-13
Additional StatistiCs........ccoiuiiiiiiiiiiiiiiiiii e 10-15

Wait Events Statistics...........ccccooiiiiiiiiii 10-17
buffer busy Waits.........c.ooiiii s 10-19
db file scattered read...........covviviiiiiiiiiiiiiii e 10-21
db file sequential TeAdccccouviiiiiiiiiiiiiic e 10-22
direct path read and direct path read tempccooviiiii 10-24
direct path write and direct path write temp........ccooovviviiii 10-25
eNqUEUE (E11Q:) WISoiiiiiiiiiiic e 10-25
events in wait class Other ... 10-28
1E€ DULLET WALLS ..ottt 10-28
Idle Wait EVENLSc.coouiiiiiiiiiiicccrcc e 10-30
JatCh @VENES....oviii 10-30
log file paralle]l WIIte.........cccciiiiiiiiiiiiiiiiic e 10-35
Hbrary CAChe PIM...c.ccccucciiiiiicccceeee e 10-35
library cache LOCK........couiiiiiiiiice 10-35
10g DULFET SPACE.......cmiiiiiiiiiicc e 10-35
10g fIle SWILCH ... 10-35
10G fl@ SYINC c.eeivtt e 10-36
TADIMNS IPC TEPLY ..oviiiiiiiic e 10-36
SOQLXINEE EVEINTS ...uviiiiiciiieieeeee ettt ettt et e ve e taeeae e teestbe e saeeaseesbeessaeeaseessesaseesessnseesannes 10-37

Real-Time SQL MONIOTINGccooiiiiiiiiiiiiiiic s 10-38

Vii

SQL Plan MONItOTINGcciviiiiiiiiiiiiiieicicicceec e 10-39

Parallel Execution MONItOTINGcoviioiiiiieiiiciece e 10-39
Generating the SQL Monitor Report ..o 10-39
Enabling and Disabling SQL MONItOTINGcccceviiuiiiiicieieiicictee e 10-42
Tuning Instance Recovery Performance: Fast-Start Fault Recoverycccocoociiinncnnne. 10-42
About Instance RECOVETY ..o 10-42
Configuring the Duration of Cache Recovery: FAST_START_MTTR_TARGET 10-43
Tuning FAST_START_MTTR_TARGET and Using MTTR AdVisOrcccccecevveruereinirnnen. 10-46

Part IV Optimizing SQL Statements

1

12

viii

The Query Optimizer

Overview of the Query OptmizZer............ccccoiiiiiiiiii e 11-1
Optimizer OPerations........cccciviiiiiiiiiiiiiiiiii s 11-1
Components of the Query Optimizer ... 11-3
Bind Variable Peekingcoiiiiiiii 11-8

Overview of Optimizer Access Pathsccocoiniiniiiiiiiine e 11-13
FUll Table SCAMNSc.coviviiiiiiiicicccccc s 11-13
ROWIA SCANS ..ot 11-15
INAEX SCANS.....cuvviiiriiiiiiicie s 11-15
CIUSEET ACCESS ...ttt e ssaenis 11-20
HASI ACCESS ...t 11-21
Sample Table SCANS........cccccuiiririiiicicieeee e 11-21
How the Query Optimizer Chooses an Access Path............cccoooii 11-21

OVEIVIEW Of JOINMS ...ceeoviiiiiiiiiiiteiete ettt ettt sttt sttt et sa b aene 11-22
How the Query Optimizer Executes Join Statementsccooveiiiiiciciiicncccccenenes 11-22
How the Query Optimizer Chooses Execution Plans for Joins..........c.ccccooeieiniciinennae. 11-22
Nested LOOP JOINSc.cviiiiiiiiiiiiiiiiiiicc s 11-23
HASI JOINS ..ttt ettt ettt ettt e b e s b esaesbesaeseeseeseeseebessanbessenseseeseasenns 11-26
SOTt MEIZE JOINS ...ooeiiii et 11-27
CaTtESIAN JOINS ...eeuvetieiietieieet ettt ettt ettt et ettt e be e st et e st e e sae et e eatensesaeensesatenbesntensesseensenseenes 11-28
L T =3 ol [0 1 T SRR 11-28

Reading and Understanding Execution Plans...............ccooooiiiiiiiiccnes 11-32
Overview of EXPLAIN PLAN......ccoiciiiieeettrte ettt 11-32
Steps in the Execttion Plan.........c.cccccociiiiiiiiiiiccrr e 11-34

Controlling Optimizer Behavior ... 11-34
Enabling Query Optimizer FEaturesccocovviviiiiiiiniiinicccccccnne 11-35
Choosing an Optimizer GOal..........ccccovueiiiiiiiririiiiirrcer e 11-36

Using EXPLAIN PLAN

Understanding EXPLAIN PLAN ... 12-1
How Execution Plans Can Change.............cooiiiiiiieiiiiiccie i 12-2
Minimizing TRIOW-AWAYccccoiiiiiiiiiiiiiieeee et 12-2
Looking Beyond Execution PIansccccociiiiiiiiiiiiiccecceeceeeeeenene s 12-3
EXPLAIN PLAN ReSTIICHONS ...cvcvieiiictciiiictccct s 12-4

The PLAN_TABLE Output Tablecccccooiiiiiiiiiiiiiceneeeeete e 12-4

13

Running EXPLAIN PLAN ...t 12-4

Identifying Statements for EXPLAIN PLANccccoioiiiiiiiiiiicccescce s 12-5
Specifying Different Tables for EXPLAIN PLANccccccccoiiiiiiiireeeccreeeceeceeeeeeeeees 12-5
Displaying PLAN_TABLE OUtputcccccooiiiiiiiiiiiiiiiiicccs 12-5
Customizing PLAN_TABLE OUtPUL.......ccccceoeiiiiiiiiiiiiiiiccc s 12-6
Reading EXPLAIN PLAN Output........cccoooiiiiiiiiiiiiiiiicns 12-6
Viewing Parallel Execution with EXPLAIN PLANcccccoiiiiinics 12-7
Viewing Parallel Queries with EXPLAIN PLANccccocooiiiiiiiccces 12-9
Viewing Bitmap Indexes with EXPLAIN PLANcccccooiiininiiiiiiccces 12-9
Viewing Result Cache with EXPLAIN PLANccccooiiiiiiiiiccccinsnnas 12-10
Viewing Partitioned Objects with EXPLAIN PLANc.ccccooiviiniiniiniicc 12-11
Examples of Displaying Range and Hash Partitioning with EXPLAIN PLAN................... 12-11
Examples of Pruning Information with Composite Partitioned Objects............ccccevvvreenine. 12-12
Examples of Partial Partition-Wise JOINScccooeuriiiiiiiieioiic 12-14
Examples of Full Partition-wise JOINSccoeririiiiiiiiiiiiicccciccccciciceeee e 12-15
Examples of INLIST ITERATOR and EXPLAIN PLAN.......ccccovinnniiiines 12-16
Example of Domain Indexes and EXPLAIN PLAN.........ccccoooiiiiiiiiic 12-17
PLAN_TABLE COIUMIS.......coiiiiiiiiitiitictcctcncct st csescs st sssss st s s s s s st s s s nesens 12-17
Managing Optimizer Statistics
Overview of Optimizer Statistics.........cccoeiriviriiiiic e 13-1
Managing Automatic Optimizer Statistics Collection..............cccccoeviiiiiiniiiiiiii, 13-2
Enabling and Disabling Automatic Optimizer Statistics Collectioncccccevviviiinininnnnes 13-2
Considerations When Gathering StatistiCs...........cocoeiieiiiiieiiiceeeccceeeceeeeeeenenes 13-3
Gathering Statistics Manually ... 13-5
Gathering Statistics with DBMS_STATS Procedures.............cccovuviviniiiiiiinnniniininiinne 13-5
Setting Preferences for Manual Statistics Gathering............cccocoevvvvverrnnnnnrreceeene 13-9
When to Gather StatistiCs........cccocovviiiiiiii 13-10
Comparing Statistics with DBMS_STATS Functions...........ccocueueieioiciiiiiiccieceeeec, 13-11
System Statisticsccocoiiiiiiiiii e 13-11
Workload StatiStiCs ..o s 13-12
INOWOTKIOAA SEAtISICS. ...c.veveueuiiieieiiiieicicctrte ettt 13-13
Managing Statistics............cocoooiiiiiiiii 13-14
Pending StatistiCscceuiviuciiiiicie 13-14
Managing Extended StatiSticscccceviiiiiiiiiiiiiiiiiiiicin e 13-15
Restoring Previous Versions of StatiStics ... 13-20
Exporting and Importing Statistics..........cooieieiiiiiiice 13-20
Restoring Statistics Versus Importing or Exporting Statistics..........cccooeiiiiiiiiiiiiicnnne. 13-21
Locking Statistics for a Table 0r SChema.........ccccccvviririiiirinnr e 13-21
Setting StatistiCs......oiiveieiicecie 13-22
Handling Missing StatistiCsccccoeeuiiiiiiiiiiiiiiiiiiiricrrnnn e 13-22
Controlling Dynamic Statistics ..o 13-22
Purpose of Dynamic StatistiCsoeeueiiiicieieiicic 13-23
Dynamic Statistics CONCEPLS.......cevviiiiiiiiiiiiiiicc e 13-23
Setting Dynamic Statistics Levels Manually ... 13-25
Disabling Dynamic StatistiCS.........ccooiieieiiiiicicicci 13-27
Viewing Statistics ..o 13-27

14

15

Statistics on Tables, Indexes and COIUMNS..........ccoviiiieiiieciiiieeeeecee et eaeere e 13-27
Viewing HiStOZIamScccoeieieiiiiiiiiiiici s 13-28

Using Indexes and Clusters

Understanding Index Performance.............ccococovviniiiiiiniiniiiiiiess 14-1
Tuning the Logical SErUCTUTe........cccccooiiiiiiiccec s 14-1
Index Tuning using the SQLAccess AdVISOTccocueviiiieiiiiiccc e, 14-2
Choosing Columns and Expressions t0 IndeX ..o, 14-2
Choosing Composite INAEXES........c.cccuiuimiiiiiiiiiiiiiicccecece s 14-3
Writing Statements That Use IndeXes............cooiuiiiiiiiiiiiiici e 14-4
Writing Statements That Avoid Using IndeXes............oovrueiiiirieiiiiciicccc e, 14-4
Re-creating INAEXeES.c.c.cuiuiiuiiiiiiiceccece et 14-5
Compacting INA@XEScovuiiiiiiiciciec 14-5
Using Nonunique Indexes to Enforce Uniquenessc.cooeocueieiiiiiniiicnecccceece, 14-6
Using Enabled Novalidated CONStraints.........ccooeeeeeeiiiiniiiiiieciciiccecccceeeeneenenes 14-6

Using Function-based Indexes for Performance...............ccccocoeiiiiniiiinniiiniiicccnes 14-7

Using Partitioned Indexes for Performance................ccocooviininiiiniiiniis 14-8

Using Index-Organized Tables for Performanceccccococooiiiiniiinininnicce, 14-8

Using Bitmap Indexes for Performance.............cccocooviiiiiiiiiiiiiiccs 14-9

Using Bitmap Join Indexes for Performanceccccooviiinininiinins 14-9

Using Domain Indexes for Performancecccooiiiiiniiinniiiccnes 14-9

Using Table Clusters for Performance.............ccocooviiiiiiiiiicccccccnnas 14-10

Using Hash Clusters for Performance.............ccccooviiiiiiiiiiiiccccccnnes 14-11

Using SQL Plan Management

Overview of SQL Plan Baselinescccocooiriiiiiiiiiiiieieteteeeeiet ettt ettt ebe e eaen 15-1
Purpose of SQL Plan Baselines.........ccccciiiiiiiiiiiiieccceeeeeeiee e 15-1
Architecture of SQL Plan Baselinesccceeieeeriiiiieniinieieceeieeeere ettt se e ssesveeneas 15-2

Managing SQL Plan Baselines ..o 15-3
Capturing SQL Plan Baselines..........ccccccciuiiuiimiiiiiiiicceeeeceieeeeeeee e seeeees 15-3
Selecting SQL Plan Baselines............coiiuiiiiiiiiiiiiii 15-5
Evolving SQL Plan Baselines...........ccccciiiiiiiiiiiiiiiiciccieeeeeesceeiesee e 15-6

Using SQL Plan Baselines with SQL Tuning AdvVisorcccccoeiinniiiniiie, 15-7

Using Fixed SQL Plan Baselinescccccooviiiiiiiiiiiiicccs 15-8

Displaying SQL Plan Baselines............ccccccceiuiiiiiiiiiiiiiiiiiiiiciieeseees s 15-8

SQL Management Base ... 15-10
Disk SPace USAZEc.cveviiuiieiiiiiiciei ettt 15-10
PUr@ing POLICYcocviviiiiiiiiiiciiiccc s 15-10
SQL Management Base Configuration Parameters...........ccccccccceuiviniinnnnnnnninncrenes 15-11

Importing and Exporting SQL Plan Baselines.............cccoooiiiiiiiiiiiiiccne, 15-11

Migrating Stored Outlines to SQL Plan Baselinescccccoooiviiiiiniiiiiicccne, 15-12
Overview of Stored Outline Migration..........cccoieeeeeiiiniiiiiiicciciiccccceeceseeeeenenes 15-12
Preparing for Stored Outline Migrationc..coceiieiiiieiiiiiicccc 15-17
Migrating Outlines to Utilize SQL Plan Management Featuresccccoccooiiiniiiinnnne. 15-18
Migrating Outlines to Preserve Stored Outline Behavior ... 15-19
Performing Follow-Up Tasks After Stored Outline Migrationcccooeeuevirniiiiincnennn. 15-20

16 SQL Tuning Overview

17

Introduction t0 SQL TUNINGcccocoiiiiiiiiiiii e 16-1
G0als fOr TUNING ..o s 16-1
Reduce the WOrkloadccviiiiiiiiiiiiiiii s 16-2
Balance the Workload...........cccociiiiiiii s 16-2
Parallelize the Workload..........ccoooeveiiiiiiiiiiiicc e 16-2
Identifying High-Load SQL............cccooiiiiiii e 16-2
Identifying Resource-Intensive SQLccooiiiiiiiiii e 16-2
Gathering Data on the SQL Identifiedc.cccocoeiiiiiiiiiiicceccceecceeeeeeeeeees 16-4
Automatic SQL Tuning Features..............ccococoviiiiiiiiiiiis 16-5
ADDM ... 16-5
SQL TUNING AdVISOT ...cviiiiiiiiiiiiiiiiiiiii s 16-5
SQL TUNING SEES ..ottt 16-5
SQOL ACCESS AQVISOT.....icuieiietieteeieecteeeeiteetesteetteteeseesseesesseesbesseessesssessesssessasssessesssassesssessesssessesseas 16-5
Developing Efficient SQL Statements...............cccccooiiiiiiiie, 16-5
Veritying Optimizer StatistiCsccoirueieiiiieicicc 16-6
Reviewing the Execution Plan............ccccoiiiiiiiiess 16-6
Restructuring the SQL Statements...........ccccceiiiiiiiiiiiecceeeeeee e 16-7
Controlling the Access Path and Join Order with Hintscccooooiiiiii, 16-9
Restructuring the INAeXes ..o 16-12
Modifying or Disabling Triggers and Constraints............cccoeoviecicuiiicncceecieeeeeenenes 16-12
Restructuring the Data ... 16-12
Maintaining Execution Plans Over Time.........c.cccooiiiiiiiiiiicc 16-13
Visiting Data as Few Times as POSSIDIEccovviiiiiiiiiiiicccccccccccccccccees 16-13
Building SQL Test Cases ...t s s 16-14
Creating @ Test Case........cccoeeiieiiiiei s 16-15
Automatic SQL Tuning
Overview of the Automatic Tuning Optimizer ..., 17-1
Satistics ANALYSIS.....c.cuiiiiiiiiieiicicccee s 17-2
SQL PIOfIlING «.eeviiiitt e 17-2
Access Path ANALYSIsccciiiiiiiiiiiiiiic s 17-2
SQL Structure ANALYSISc.cceueuiiiuiiiieiieiieeeeeeetee et 17-3
Alternative Plan ANalySisccoieuiiiiiiiiiiicie i 17-3
Managing the Automatic SQL Tuning AdViSOor............ccccccviiiiiiniiiiiiins 17-5
How Automatic SQL Tuning Works.........ccccccvciiiiiiiiiiceecceeeeeereeeeeeeneeeeeeeeeneeeeees 17-5
Enabling and Disabling Automatic SQL TUNINg.........cccoeveiiiiciiiiiiiccc 17-6
Configuring Automatic SQL TUNING.......ccccooeiiiriiiiiiiiiiiiiiii s 17-7
Viewing Automatic SQL Tuning Reports.........ccccceeiviiiiiiiniiniiiiiiicccccne 17-8
Tuning Reactively with SQL Tuning Advisorcccccccoviiiiiiiiiiiiiis 17-9
INPUL SOULCES ...t 17-9
TUNINE OPLIONS....coiiiiiiiiiiiiii e 17-10
AdVISOT OULPUL ..o 17-10
Running SQL Tuning AdVISOTccceiiiiiiiiiiiiiiiiccccicceeee e 17-10
Managing SOL Tuning Sets...........cccooiiiiiiiiiiii s 17-15
Creating a SQL TUNINgG Setc.coovriiiiiiii 17-16

xi

18

19

20

Xii

Loading a SQL TUNING Set.......ccoooueiiiiiiiiic 17-17

Displaying the Contents of a SQL Tuning Setcooeoriioiiiiiiiiiic e, 17-17
Modifying @ SQL TUNING SEt......c.cuevruiiiriiiriiirrrerr e 17-18
Transporting a SQL Tuning Set..........cccoouiiiiiiiiiii e 17-18
Dropping a SQL Tuning Setccccoooiiiiiiiiiiiiiiii s 17-19
Additional Operations on SQL Tuning Sets..........cccocvoiviiiiiiiniiiiiiiccceeccenceeeenenes 17-19
Managing SQL Profiles............ccocoviiniiiiiiiii 17-19
OVerview Of SQL ProOfilesc.ooiiiiiiiiiiieieseeeteteetee ettt ettt et ae s te s reesaesreens 17-20
Accepting a SQL Profilecoouiiiiiiiiiiiirr e 17-24
Altering @ SQL Profilec.ooiiiiiiiiii e 17-25
Dropping @ SQL Profile........c.ooiiiii 17-25
Transporting @ SQL Profilecccviiiiiiiiirr e 17-25
SOL TUNING VIBWS ... ea s st aeaas 17-26
SQL Access Advisor
Overview 0f SQL AcCeSS AdVISOT.......ccoccveviiiieiieieieeieteet ettt st ae e ae e esse s esseessesesssesennes 18-1
Overview of Using SQL Access AdVISOTcccueviruiieiiiiiieieiccie e 18-3
Using SOL Access AdVISOTccccooiiiiiiiiniiiiiiii s 18-5
Steps for Using SQL AcCeSS AAVISOT......cceuiiurieiiiiicieieiiciie et 18-5
Privileges Needed to Use SQL Access AdVISOTcoourueueieiiucieieiicicie e 18-6
Setting Up Tasks and Templates..........ccocociiiimiiiiiiiiiiiiceeeeeeee e enenes 18-6
SQL Access AdViSOr WOTKIOAASccecvieieriiiieiicieiecteteetee ettt et sae s ae e sae e e e saensens 18-8
Working with Recommendations.............c.ooiriieiiiciiiiicecc e 18-9
Performing a QuUick TUNE......c.cccciuiiiiiiiiiiiccre e 18-21
Managing TasKS.........cccuiirieiiiiieie 18-22
Using SQL Access Advisor CONStANtScccceueiiuiieiiiicicieccc 18-23
Examples of Using SQL Access AAVISOLcccccueuiuiuririiiiirnirieiiieeeieeeereeeeeeseses s 18-23
Tuning Materialized Views for Fast Refresh and Query Rewrite.............ccooooviiiinn. 18-28
DBMS_ADVISOR.TUNE_MVIEW Procedure..........ccccooieiiiniiiiininiiiiinicesnisceeesecenns 18-28

Using Optimizer Hints

Overview of Optimizer Hints ... 19-1
TYPES Of HINES ..ottt 19-1
HiInts By CateZOrycucvevieiiieieiececie 19-2

SPecifying HINES ... 19-8
Specifying a Full Set of HINtSccccoiuiiiiiiiiiiiiccrecccce s 19-8
Specifying a Query Block in a Hint ..o 19-8
Specifying Global Table HInts.........c.ccccoviiiiiiiiiiiiiicccicccceccc e 19-10
Specifying Complex Index HINtscccccoeiiiiiiiiiiiiieeccrecer s 19-12

Using Hints With VIEWS ... 19-12
Hints and CompleX VIEWScccoviiiiiiiiiiiiii e 19-13
Hints and Mergeable VIEWScccccviiiiiiiriiiirncereeeee s 19-13
Hints and Nonmergeable VIeWS.........ccccoiiiiiiiiii 19-14

Using Plan Stability
Using Plan Stability to Preserve Execution Plans................ccooooiiiii 20-1

Using Hints with Plan Stability ..o, 20-2

StOrING OULHNES......ooceiiiee e 20-3
Enabling Plan Stability ... s 20-3
Using Supplied Packages to Manage Stored Outlinescccccovviiiiiiiiiiciinccc 20-3
Creating OULHNEScoviii e 20-4
Using Stored OULHNESccoiiuiiiiiiiiiicicceceecte et ees 20-5
Viewing Outline Data........coocueuiiiiiiiiici 20-6
Moving Outline Tables............ooiiiiii e 20-6
Using Plan Stability with Query Optimizer Upgrades..............ccoeiiiniiiniiiiiiiie, 20-8
Moving from RBO to the Query Optimizercooouoiiiiiiiiiii e, 20-8
Moving to a New Oracle Release under the Query Optimizerccccooeieiiiiiiiicicieinnnen, 20-9
21 Using Application Tracing Tools
End-to-End Application Tracing ... 21-1
Enabling and Disabling Statistic Gathering for End-to-End Tracing........c.ccccccovevvevrnncnnee 21-3
Viewing Gathered Statistics for End-to-End Application Tracingcccooeeveiirieieinnnen, 21-3
Enabling and Disabling for End-to-End Tracing...........ccoeeeioiiiiiiiiciiec 21-4
Viewing Enabled Traces for End-to-End Tracing..........c.cccccocieiiicciiiciecceccceceeneees 21-6
Using the trcsess ULty ..o 21-6
SYNEAX O tICSESS . ..ouvviicececie e 21-7
Sample OUEPUL Of tICSESScuouuimiuiiiiiiiiiiiiiececeeie et seees 21-7
Understanding SQL Trace and TKPROF.............ccccccoooiiiiiiiiiiis 21-8
Understanding the SQL Trace Facilitycccoooeiiiiiiiiiii e, 21-8
Understanding TKPROF ..ot sees 21-9
Using the SQL Trace Facility and TKPROFcccccoviiiiiiiiis 21-9
Step 1: Setting Initialization Parameters for Trace File Managementccoooovenenene. 21-10
Step 2: Enabling the SQL Trace Facilityccccccciiiiiiiiiiiiiccecceeeeceeeeeeeeeeaes 21-11
Step 3: Formatting Trace Files with TKPROFccccoooiiiiiiiii 21-12
Step 4: Interpreting TKPROF Output.......cccccooiiiiiiiiiiiiii 21-15
Step 5: Storing SQL Trace Facility StatiSticscccoceeeiiiiiciiiiiicereceer e 21-20
Avoiding Pitfalls in TKPROF Interpretation ..o 21-22
Avoiding the Argument TIapcccooviiiiininiiiii e 21-22
Avoiding the Read COonsistency TTapcccccevuveriririririririirrnrrer e 21-22
Avoiding the Schema Trapcccooevoiiiiiiiiie 21-22
Avoiding the Time TTaP ... 21-23
Sample TKPROF OULPULccooiiiiiiiiieiereeereeeectee ettt 21-24
Sample TKPROF Header.........ccccooviiiiiiiiiiiiiiiiiiiiiii e 21-24
Sample TKPROF BOAYccoeviiiiiiiiiiiiiiiiiiiiiicircin e 21-24
Sample TKPROF SUMMATYcooviviiiiiiiiiiiiiirerccerieee e 21-26
Glossary
Index

xiii

Xiv

Audience

Preface

This preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

s Conventions

Oracle Database Performance Tuning Guide is intended for database administrators
(DBAs) who are responsible for the operation, maintenance, and performance of
Oracle Database. This guide describes how to use Oracle Database performance tools
in the command-line interface to optimize database performance and tune SQL
statements. This guide also describes performance best practices for creating an initial
database and includes performance-related reference information.

See Also: Oracle Database 2 Day + Performance Tuning Guide to learn
how to use Oracle Enterprise Manager to tune database performance

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

Before reading this guide, you should be familiar with the following manuals:
» Oracle Database Concepts

s Oracle Database 2 Day DBA

» Oracle Database Advanced Application Developer’s Guide

s Oracle Database Administrator’s Guide

XV

To learn how to use Oracle Enterprise Manager to tune the performance of Oracle
Database, see Oracle Database 2 Day + Performance Tuning Guide.

To learn how to tune data warehouse environments, see Oracle Database Data
Warehousing Guide.

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option during an Oracle Database
installation. To learn how to install and use these schemas, see Oracle Database Sample
Schemas.

To learn about Oracle Database error messages, see Oracle Database Error Messages.
Oracle Database error message documentation is only available in HTML. If you are
accessing the error message documentation on the Oracle Documentation CD, you can
browse the error messages by range. After you find the specific range, use your
browser's find feature to locate the specific message. When connected to the Internet,
you can search for a specific error message using the error message search feature of
the Oracle online documentation.

Conventions
The following text conventions are used in this document:
Convention Meaning
boldface Boldface type indicates graphical user interface elements associated

with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XVi

What's New in Oracle Database Performance

Tuning Guide?

This section describes new performance tuning features of Oracle Database 11g
Release 2 (11.2) and provides pointers to additional information. The features and
enhancements described in this section comprise the overall effort to optimize
database performance.

For a summary of all new features for Oracle Database 11g Release 2 (11.2), see Oracle
Database New Features Guide.

Oracle Database 11g Release 2 (11.2.0.4) New Features in Oracle
Database Performance

The new and updated performance tuning features include:

Dynamic statistics enhancements

In previous releases, Oracle Database only gathered dynamic statistics (previously
called dynamic sampling) when one or more of the tables in a query did not have
optimizer statistics. Starting in Oracle Database 11g Release 2 (11.2.0.4), the
optimizer can automatically decide whether dynamic statistics are useful and
which dynamic statistics level to use for all SQL statements. For example, the
optimizer automatically decides whether to gather dynamic statistics during table
scans, index access, joins, and GROUP BY operations. The enhanced behavior is
enabled only when the OPTIMIZER DYNAMIC_ SAMPLING initialization parameter is
set to the new value of 11.

See "Controlling Dynamic Statistics" on page 13-22.

Oracle Database 11g Release 2 (11.2.0.2) New Features in Oracle
Database Performance

The new and updated performance tuning features include:

Resource Manager enhancements for parallel statement queuing

You can use Resource Manager to control the order of statements in a parallel
statement queue. For example, you can ensure that high-priority statements spend
less time in the queue. Also, you can use a directive to prevent one consumer
group from monopolizing all of the parallel servers, and to specify the maximum
time in seconds that a parallel statement can wait to be launched.

For more information, see "Managing CPU Resources Using Oracle Database
Resource Manager" on page 9-10 and Oracle Database VLDB and Partitioning Guide.

xvii

Resource Manager enhancements for CPU utilization limit

You can use Resource Manager to limit the CPU consumption of a consumer
group. This feature restricts the CPU consumption of low-priority sessions and can
help provide more consistent performance for the workload in a consumer group.

For more information, see "Managing CPU Resources Using Oracle Database
Resource Manager" on page 9-10.

New package for Automatic SQL Tuning

The DBMS_AUTO_SQLTUNE package is the new interface for managing the Automatic
SQL Tuning task. Unlike the SQL Tuning Advisor package DBMS_SQLTUNE, which
requires ADVISOR privileges, DBMS_AUTO_SQLTUNE requires the DBA role.

For more information, see "Configuring Automatic SQL Tuning" on page 17-7.
Oracle Orion I/0O Calibration Tool Documentation

Oracle Orion is a tool for predicting the performance of an Oracle database
without having to install Oracle or create a database. Unlike other I/O calibration
tools, Oracle Orion is expressly designed for simulating Oracle database I/O
workloads using the same I/O software stack as Oracle. Orion can also simulate
the effect of striping performed by Oracle Automatic Storage Management.

For more information, see "I/O Calibration with the Oracle Orion Calibration
Tool" on page 8-12.

Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle
Database Performance

The new and updated performance tuning features include:

xviii

New Automatic Workload Repository (AWR) views

AWR supports several new historical views, including DBA_HIST DB_CACHE_
ADVICE and DBA_HIST IOSTAT DETAIL.

For more information, see "Using Automatic Workload Repository Views" on
page 5-21.

New Automatic Workload Repository reports

New AWR reports and AWR Compare Periods reports have been added for Oracle
Real Application Clusters (Oracle RAC).

For more information, see "Generating Automatic Workload Repository Reports"
on page 5-22 and "Generating Automatic Workload Repository Compare Periods
Reports" on page 5-28.

Table annotation support for the client result cache

The client result cache supports table annotations.

For more information, see "Using Result Cache Table Annotations" on page 7-61.
Enhancement to the RESULT_CACHE annotation for PL/SQL functions

In Oracle Database 11g Release 1 (11.1), PL/SQL functions that performed queries
referencing annotated tables required the RELIES_ON clause. This clause has been
deprecated and is no longer required.

Hints specifying parallelism at the statement level

The scope of the parallel hints has been extended to include the statement level.

For more information, see "Hints for Parallel Execution" on page 19-5.
In-Memory Parallel Execution

When using parallel query, you can configure the database to use the database
buffer cache instead of performing direct reads into the PGA for a SQL statement.
This configuration may be appropriate when database servers have a large
amount of memory. Also, an Oracle Real Applications Cluster (Oracle RAC)
database can aggregate the size of the buffer cache of all nodes, thereby caching
larger objects and caching more queries.

For more information, see "Using the Buffer Cache Effectively" on page 7-7.
Hints for online application upgrades

The online application upgrade hints suggest how to handle conflicting INSERT
and UPDATE operations when performing an online application upgrade using
edition-based redefinition. For more information, see "Hints for Online
Application Upgrade" on page 19-4.

SQL Tuning Advisor enhancements
This release includes the following enhancements to SQL Tuning Advisor:

— While tuning a SQL statement, SQL Tuning Advisor searches real-time and
historical performance data for alternative execution plans for the statement. If
plans other than the original plan exist, then SQL Tuning Advisor reports an
alternative plan finding. See "Alternative Plan Analysis" on page 17-3.

- You can transport a SQL tuning set to any database created in Oracle Database
10g (Release 2) or later. This technique is useful when using SQL Performance
Analyzer to tune regressions on a test database. See "Transporting a SQL
Tuning Set" on page 17-18.

- Sometimes SQL Tuning Advisor may recommend accepting a profile that uses
the Automatic Degree of Parallelism (Auto DOP) feature. A parallel query
profile is only recommended when the original plan is serial and when
parallel execution can significantly reduce the elapsed time for a long-running
query. See "SQL Profile Recommendations" on page 17-21.

Migrating stored outlines to SQL plan baselines

Oracle Database enables you to safely migrate from stored outlines to SQL plan
baselines. After the migration, you can maintain the same plan stability you had
using stored outlines while being able to utilize the more advanced features
provided by the SQL Plan Management framework. For more information, see
"Migrating Stored Outlines to SQL Plan Baselines" on page 15-12.

Xix

XX

Part |

Performance Tuning

Part I provides an introduction and overview of performance tuning.
The chapter in this part is:

» Chapter 1, "Performance Tuning Overview"

1

Performance Tuning Overview

This chapter provides an introduction to performance tuning and contains the
following sections:

Introduction to Performance Tuning

Introduction to Performance Tuning Features and Tools

Introduction to Performance Tuning

This guide provides information about tuning Oracle Database for performance.
Topics discussed in this guide include:

Performance Planning
Instance Tuning
SQL Tuning

See Also: Oracle Database 2 Day + Performance Tuning Guide to learn
how to use Oracle Enterprise Manager to tune database performance

Performance Planning

You should complete Part 1I, "Performance Planning" before proceeding to other parts
of this guide. Based on years of designing and performance experience, Oracle has
designed a performance methodology. This part describes activities that can
dramatically improve system performance and contains the following topics:

Instance Tuning

Understanding Investment Options
Understanding Scalability

System Architecture

Application Design Principles

Workload Testing, Modeling, and Implementation
Deploying New Applications

Part III, "Optimizing Instance Performance" discusses the factors involved in the
tuning and optimizing of an Oracle database instance.

When considering instance tuning, take care in the initial design of the database to
avoid bottlenecks that could lead to performance problems. In addition, you must
consider:

Performance Tuning Overview 1-1

Introduction to Performance Tuning

s Allocating memory to database structures
s Determining I/O requirements of different parts of the database
s Tuning the operating system for optimal performance of the database

After the database instance has been installed and configured, you must monitor the
database as it is running to check for performance-related problems.

Performance Principles

Performance tuning requires a different, although related, method to the initial
configuration of a system. Configuring a system involves allocating resources in an
ordered manner so that the initial system configuration is functional.

Tuning is driven by identifying the most significant bottleneck and making the
appropriate changes to reduce or eliminate the effect of that bottleneck. Usually,
tuning is performed reactively, either while the system is in preproduction or after it is
live.

Baselines

The most effective way to tune is to have an established performance baseline that you
can use for comparison if a performance issue arises. Most database administrators
(DBAs) know their system well and can easily identify peak usage periods. For
example, the peak periods could be between 10.00am and 12.00pm and also between
1.30pm and 3.00pm. This could include a batch window of 12.00am midnight to 6am.

It is important to identify these peak periods at the site and install a monitoring tool
that gathers performance data for those high-load times. Optimally, data gathering
should be configured from when the application is in its initial trial phase during the
QA cycle. Otherwise, this should be configured when the system is first in production.

Ideally, baseline data gathered should include the following:

= Application statistics (transaction volumes, response time)
= Database statistics

= Operating system statistics

s Disk I/O statistics

= Network statistics

In the Automatic Workload Repository, baselines are identified by a range of snapshots
that are preserved for future comparisons. See "Overview of the Automatic Workload
Repository” on page 5-8.

The Symptoms and the Problems

A common pitfall in performance tuning is to mistake the symptoms of a problem for
the actual problem itself. It is important to recognize that many performance statistics
indicate the symptoms, and that identifying the symptom is not sufficient data to
implement a remedy. For example:

= Slow physical I/O

Generally, this is caused by poorly-configured disks. However, it could also be
caused by a significant amount of unnecessary physical I/O on those disks issued
by poorly-tuned SQL.

s Latch contention

1-2 Oracle Database Performance Tuning Guide

Introduction to Performance Tuning

Rarely is latch contention tunable by reconfiguring the instance. Rather, latch
contention usually is resolved through application changes.

s Excessive CPU usage

Excessive CPU usage usually means that there is little idle CPU on the system.
This could be caused by an inadequately-sized system, by untuned SQL
statements, or by inefficient application programs.

When to Tune
There are two distinct types of tuning:

» Proactive Monitoring

s Bottleneck Elimination

Proactive Monitoring Proactive monitoring usually occurs on a regularly scheduled
interval, where several performance statistics are examined to identify whether the
system behavior and resource usage has changed. Proactive monitoring can also be
considered as proactive tuning.

Usually, monitoring does not result in configuration changes to the system, unless the
monitoring exposes a serious problem that is developing. In some situations,
experienced performance engineers can identify potential problems through statistics
alone, although accompanying performance degradation is usual.

Experimenting with or tweaking a system when there is no apparent performance
degradation as a proactive action can be a dangerous activity, resulting in unnecessary
performance drops. Tweaking a system should be considered reactive tuning, and the
steps for reactive tuning should be followed.

Monitoring is usually part of a larger capacity planning exercise, where resource
consumption is examined to see changes in the way the application is being used, and
the way the application is using the database and host resources.

Bottleneck Elimination Tuning usually implies fixing a performance problem. However,
tuning should be part of the life cycle of an application—through the analysis, design,
coding, production, and maintenance stages. Often, the tuning phase is left until the
database is in production. At this time, tuning becomes a reactive process, where the
most important bottleneck is identified and fixed.

Usually, the purpose for tuning is to reduce resource consumption or to reduce the
elapsed time for an operation to complete. Either way, the goal is to improve the
effective use of a particular resource. In general, performance problems are caused by
the overuse of a particular resource. The overused resource is the bottleneck in the
system. There are several distinct phases in identifying the bottleneck and the
potential fixes. These are discussed in the sections that follow.

Remember that the different forms of contention are symptoms that can be fixed by
making changes in the following places:

s Changes in the application, or the way the application is used
= Changes in Oracle
s Changes in the host hardware configuration

Often, the most effective way of resolving a bottleneck is to change the application.

Performance Tuning Overview 1-3

Introduction to Performance Tuning Features and Tools

SQL Tuning

Part IV, "Optimizing SQL Statements" of this guide discusses the process of tuning and
optimizing SQL statements.

Many application programmers consider SQL a messaging language, because queries
are issued and data is returned. However, client tools often generate inefficient SQL
statements. Therefore, a good understanding of the database SQL processing engine is
necessary for writing optimal SQL. This is especially true for high transaction
processing systems.

Typically, SQL statements issued by OLTP applications operate on relatively few rows
at a time. If an index can point to the exact rows that are required, then Oracle
Database can construct an accurate plan to access those rows efficiently through the
shortest possible path. In decision support system (DSS) environments, selectivity is
less important, because they often access most of a table's rows. In such situations, full
table scans are common, and indexes are not even used. This book is primarily
focussed on OLTP-type applications. For detailed information on DSS and mixed
environments, see the Oracle Database Data Warehousing Guide.

Query Optimizer and Execution Plans

When a SQL statement is executed on an Oracle database, the query optimizer
determines the most efficient execution plan after considering many factors related to
the objects referenced and the conditions specified in the query. This determination is
an important step in the processing of any SQL statement and can greatly affect
execution time.

During the evaluation process, the query optimizer reviews statistics gathered on the
system to determine the best data access path and other considerations. You can
override the execution plan of the query optimizer with hints inserted in SQL
statement.

Introduction to Performance Tuning Features and Tools

Effective data collection and analysis is essential for identifying and correcting
performance problems. Oracle Database provides several tools that allow a
performance engineer to gather information regarding database performance. In
addition to gathering data, Oracle Database provides tools to monitor performance,
diagnose problems, and tune applications.

The Oracle Database gathering and monitoring features are mainly automatic,
managed by Oracle background processes. To enable automatic statistics collection
and automatic performance features, the STATISTICS_LEVEL initialization parameter
must be set to TYPICAL or ALL. You can administer and display the output of the
gathering and tuning tools with Oracle Enterprise Manager, or with APIs and views.
For ease of use and to take advantage of its numerous automated monitoring and
diagnostic tools, Oracle Enterprise Manager Database Control is recommended.

1-4 Oracle Database Performance Tuning Guide

Introduction to Performance Tuning Features and Tools

See Also:

» Oracle Database 2 Day DBA to learn how to use Oracle
Enterprise Manager to manage Oracle Database

» Oracle Database 2 Day + Performance Tuning Guide to learn how
to use Oracle Enterprise Manager to tune database performance

» Oracle Database PL/SQL Packages and Types Reference for detailed
information on the DBMS_ADVISOR, DBMS_SQLTUNE, DBMS_AUTO_
SQLTUNE, and DBMS_WORKLOAD_REPOSITORY packages

» Oracle Database Reference for information about the STATISTICS_
LEVEL initialization parameter

Automatic Performance Tuning Features

The Oracle Database automatic performance tuning features include:

Automatic Workload Repository (AWR) collects, processes, and maintains
performance statistics for problem detection and self-tuning purposes. See
"Overview of the Automatic Workload Repository" on page 5-8.

Automatic Database Diagnostic Monitor (ADDM) analyzes the information
collected by the AWR for possible performance problems with the Oracle
database. See "Overview of the Automatic Database Diagnostic Monitor" on
page 6-1.

SQL Tuning Advisor allows a quick and efficient technique for optimizing SQL
statements without modifying any statements. See "Tuning Reactively with SQL
Tuning Advisor" on page 17-9.

SQLAccess Advisor provides advice on materialized views, indexes, and
materialized view logs. See "Automatic SQL Tuning Features" on page 16-5 and
"Overview of SQL Access Advisor" on page 18-1 for information about SQLAccess
Advisor.

End-to-End Application tracing identifies excessive workloads on the system by
specific user, service, or application component. See "End-to-End Application
Tracing" on page 21-1.

Server-generated alerts automatically provide notifications when impending
problems are detected. See Oracle Database Administrator’s Guide to learn how to
monitor the operation of the database with server-generated alerts.

Additional advisors that can be launched from Oracle Enterprise Manager, such as
memory advisors to optimize memory for an instance. The memory advisors are
commonly used when automatic memory management is not set up for the
database. Other advisors are used to optimize mean time to recovery (MTTR),
shrinking of segments, and undo tablespace settings. To learn about the advisors
available with Oracle Enterprise Manager, see Oracle Database 2 Day + Performance
Tuning Guide.

The Database Performance page in Oracle Enterprise Manager displays host,
instance service time, and throughput information for real time monitoring and
diagnosis. The page can be set to refresh automatically in selected intervals or
manually. To learn about the Database Performance page, see Oracle Database 2
Day + Performance Tuning Guide.

Performance Tuning Overview 1-5

Introduction to Performance Tuning Features and Tools

Additional Oracle Database Tools

This section describes additional Oracle Database tools that you can use for
determining performance problems.

V$ Performance Views

The v$ views are the performance information sources used by all Oracle Database
performance tuning tools. The V$ views are based on memory structures initialized at
instance startup. The memory structures, and the views that represent them, are
automatically maintained by Oracle Database for the life of the instance. See

Chapter 10, "Instance Tuning Using Performance Views" for information diagnosing
tuning problems using the V$ performance views.

See Also: Oracle Database Reference to learn more about dynamic
performance views

Note: Oracle recommends using the Automatic Workload
Repository to gather performance data. These tools have been
designed to capture all of the data needed for performance analysis.

1-6 Oracle Database Performance Tuning Guide

Part Il

Performance Planning

Part II describes ways to improve Oracle Database performance by starting with
sound application design and using statistics to monitor application performance. It
explains the Oracle Performance Improvement Method and emergency performance
techniques for dealing with performance problems.

The chapters in this part include:
» Chapter 2, "Designing and Developing for Performance"

» Chapter 3, "Performance Improvement Methods"

2

Designing and Developing for Performance

Optimal system performance begins with design and continues throughout the life of
your system. Carefully consider performance issues during the initial design phase so
that you can tune your system more easily during production.

This chapter contains the following sections:

s Oracle Methodology

s Understanding Investment Options

s Understanding Scalability

= System Architecture

= Application Design Principles

= Workload Testing, Modeling, and Implementation
= Deploying New Applications

Oracle Methodology

System performance has become increasingly important as computer systems get
larger and more complex as the Internet plays a bigger role in business applications. To
accommodate this, Oracle has produced a performance methodology based on years
of designing and performance experience. This methodology explains clear and simple
activities that can dramatically improve system performance.

Performance strategies vary in their effectiveness, and systems with different
purposes—such as operational systems and decision support systems—require
different performance skills. This book examines the considerations that any database
designer, administrator, or performance expert should focus their efforts on.

System performance is designed and built into a system. It does not just happen.
Performance problems are usually the result of contention for, or exhaustion of, some
system resource. When a system resource is exhausted, the system cannot scale to
higher levels of performance. This new performance methodology is based on careful
planning and design of the database, to prevent system resources from becoming
exhausted and causing down-time. By eliminating resource conflicts, systems can be
made scalable to the levels required by the business.

Understanding Investment Options

With the availability of relatively inexpensive, high-powered processors, memory, and
disk drives, there is a temptation to buy more system resources to improve
performance. In many situations, new CPUs, memory, or more disk drives can indeed

Designing and Developing for Performance 2-1

Understanding Scalability

provide an immediate performance improvement. However, any performance
increases achieved by adding hardware should be considered a short-term relief to an
immediate problem. If the demand and load rates on the application continue to grow,
then the chance of the same problem occurring soon is likely.

In other situations, additional hardware does not improve the system's performance at
all. Poorly designed systems perform poorly no matter how much extra hardware is
allocated. Before purchasing additional hardware, ensure that serialization or single
threading is not occurring within the application. Long-term, it is generally more
valuable to increase the efficiency of your application in terms of the number of
physical resources used for each business transaction.

Understanding Scalability

The word scalability is used in many contexts in development environments. The
following section provides an explanation of scalability that is aimed at application
designers and performance specialists.

This section covers the following topics:
= What is Scalability?
= System Scalability

» Factors Preventing Scalability

What is Scalability?

Scalability is a system's ability to process more workload, with a proportional increase
in system resource usage. In other words, in a scalable system, if you double the
workload, then the system uses twice as many system resources. This sounds obvious,
but due to conflicts within the system, the resource usage might exceed twice the
original workload.

Examples of poor scalability due to resource conflicts include the following:

= Applications requiring significant concurrency management as user populations
increase

= Increased locking activities

= Increased data consistency workload

= Increased operating system workload

» Transactions requiring increases in data access as data volumes increase

s Poor SQL and index design resulting in a higher number of logical I/Os for the
same number of rows returned

= Reduced availability, because database objects take longer to maintain

An application is said to be unscalable if it exhausts a system resource to the point
where no more throughput is possible when its workload is increased. Such
applications result in fixed throughputs and poor response times.

Examples of resource exhaustion include the following;:
» Hardware exhaustion
s Table scans in high-volume transactions causing inevitable disk I/O shortages

= Excessive network requests, resulting in network and scheduling bottlenecks

2-2 Oracle Database Performance Tuning Guide

Understanding Scalability

= Memory allocation causing paging and swapping
= Excessive process and thread allocation causing operating system thrashing

This means that application designers must create a design that uses the same
resources, regardless of user populations and data volumes, and does not put loads on
the system resources beyond their limits.

System Scalability

Applications that are accessible through the Internet have more complex performance
and availability requirements. Some applications are designed and written only for
Internet use, but even typical back-office applications—such as a general ledger
application—might require some or all data to be available online.

Characteristics of Internet age applications include the following:
= Availability 24 hours a day, 365 days a year

= Unpredictable and imprecise number of concurrent users

= Difficulty in capacity planning

= Availability for any type of query

= Multitier architectures

= Stateless middleware

= Rapid development timescale

= Minimal time for testing

Figure 2-1 illustrates the classic workload growth curve, with demand growing at an
increasing rate. Applications must scale with the increase of workload and also when
additional hardware is added to support increasing demand. Design errors can cause
the implementation to reach its maximum, regardless of additional hardware resources
or re-design efforts.

Figure 2-1 Workload Growth Curve

o
@
S
x
S
=
ye
o
=
5
o
o
o

Applications are challenged by very short development timeframes with limited time
for testing and evaluation. However, bad design typically means that you must later

Designing and Developing for Performance 2-3

Understanding Scalability

rearchitect and reimplement the system. If you deploy an application with known
architectural and implementation limitations on the Internet, and if the workload
exceeds the anticipated demand, then failure is a real possibility. From a business
perspective, poor performance can mean a loss of customers. If Web users do not get a
response in seven seconds, then the user's attention could be lost forever.

In many cases, the cost of re-designing a system with the associated downtime costs in
migrating to new implementations exceeds the costs of properly building the original
system. The moral of the story is simple: design and implement with scalability in
mind from the start.

Factors Preventing Scalability

When building applications, designers and architects should aim for as close to perfect
scalability as possible. This is sometimes called linear scalability, where system
throughput is directly proportional to the number of CPUs.

In real life, linear scalability is impossible for reasons beyond a designer's control.
However, making the application design and implementation as scalable as possible
should ensure that current and future performance objectives can be achieved through
expansion of hardware components and the evolution of CPU technology.

Factors that may prevent linear scalability include:
s Poor application design, implementation, and configuration
The application has the biggest impact on scalability. For example:
= Poor schema design can cause expensive SQL that do not scale.
= Poor transaction design can cause locking and serialization problems.

= Poor connection management can cause poor response times and unreliable
systems.

However, the design is not the only problem. The physical implementation of the
application can be the weak link. For example:

= Systems can move to production environments with bad I/O strategies.

s The production environment could use different execution plans than those
generated in testing.

= Memory-intensive applications that allocate a large amount of memory
without much thought for freeing the memory at run time can cause excessive
memory usage.

s Inefficient memory usage and memory leaks put a high stress on the operating
virtual memory subsystem. This impacts performance and availability.

= Incorrect sizing of hardware components

Bad capacity planning of all hardware components is becoming less of a problem
as relative hardware prices decrease. However, too much capacity can mask
scalability problems as the workload is increased on a system.

» Limitations of software components

All software components have scalability and resource usage limitations. This
applies to application servers, database servers, and operating systems.
Application design should not place demands on the software beyond what it can
handle.

» Limitations of Hardware Components

2-4 Oracle Database Performance Tuning Guide

System Architecture

Hardware is not perfectly scalable. Most multiprocessor computers can get close to
linear scaling with a finite number of CPUs, but after a certain point each
additional CPU can increase performance overall, but not proportionately. There
might come a time when an additional CPU offers no increase in performance, or
even degrades performance. This behavior is very closely linked to the workload
and the operating system setup.

Note: These factors are based on Oracle Server Performance
group's experience of tuning unscalable systems.

System Architecture
There are two main parts to a system's architecture:
s Hardware and Software Components

s Configuring the Right System Architecture for Your Requirements

Hardware and Software Components

This section discusses:
» Hardware Components

= Software Components

Hardware Components

Today's designers and architects are responsible for sizing and capacity planning of
hardware at each tier in a multitier environment. It is the architect's responsibility to
achieve a balanced design. This is analogous to a bridge designer who must consider
all the various payload and structural requirements for the bridge. A bridge is only as
strong as its weakest component. As a result, a bridge is designed in balance, such that
all components reach their design limits simultaneously.

The main hardware components include:
= CPU

= Memory

s I/O Subsystem

= Network

CPU There can be one or more CPUs, and they can vary in processing power from
simple CPUs found in hand-held devices to high-powered server CPUs. Sizing of
other hardware components is usually a multiple of the CPUs on the system. See
Chapter 9, "Managing Operating System Resources".

Memory Database and application servers require considerable amounts of memory to
cache data and avoid time-consuming disk access. See Chapter 7, "Configuring and
Using Memory".

I/O Subsystem The I/O subsystem can vary between the hard disk on a client PC and
high performance disk arrays. Disk arrays can perform thousands of I/Os each second
and provide availability through redundancy in terms of multiple I/O paths and hot
pluggable mirrored disks. See Chapter 8, "I/O Configuration and Design".

Designing and Developing for Performance 2-5

System Architecture

Network All computers in a system are connected to a network, from a modem line to a
high speed internal LAN. The primary concerns with network specifications are
bandwidth (volume) and latency (speed).

Software Components

The same way computers have common hardware components, applications have
common functional components. By dividing software development into functional
components, it is possible to better comprehend the application design and
architecture. Some components of the system are performed by existing software
bought to accelerate application implementation, or to avoid re-development of
common components.

The difference between software components and hardware components is that while
hardware components only perform one task, a piece of software can perform the roles
of various software components. For example, a disk drive only stores and retrieves
data, but a client program can manage the user interface and perform business logic.

Most applications involve the following components:

= Managing the User Interface

s Implementing Business Logic

= Managing User Requests and Resource Allocation

= Managing Data and Transactions

Managing the User Interface This component is the most visible to application users, and
includes the following functions:

= Displaying the screen to the user

s Collecting user data and transferring it to business logic

= Validating data entry

= Navigating through levels or states of the application

Implementing Business Logic This component implements core business rules that are
central to the application function. Errors made in this component can be very costly
to repair. This component is implemented by a mixture of declarative and procedural

approaches. An example of a declarative activity is defining unique and foreign keys.
An example of procedure-based logic is implementing a discounting strategy.

Common functions of this component include:

= Moving a data model to a relational table structure

= Defining constraints in the relational table structure

s Coding procedural logic to implement business rules

Managing User Requests and Resource Allocation This component is implemented in all

pieces of software. However, there are some requests and resources that can be
influenced by the application design and some that cannot.

In a multiuser application, most resource allocation by user requests are handled by
the database server or the operating system. However, in a large application where the
number of users and their usage pattern is unknown or growing rapidly, the system
architect must be proactive to ensure that no single software component becomes
overloaded and unstable.

Common functions of this component include:

2-6 Oracle Database Performance Tuning Guide

System Architecture

= Connection management with the database

= Executing SQL efficiently (cursors and SQL sharing)

= Managing client state information

= Balancing the load of user requests across hardware resources

= Setting operational targets for hardware and software components

= Persistent queuing for asynchronous execution of tasks

Managing Data and Transactions This component is largely the responsibility of the
database server and the operating system.

Common functions of this component include:

= Providing concurrent access to data using locks and transactional semantics
s Providing optimized access to the data using indexes and memory cache

= Ensuring that data changes are logged in the event of a hardware failure

= Enforcing any rules defined for the data

Configuring the Right System Architecture for Your Requirements

Configuring the initial system architecture is a largely iterative process. System
architects must satisfy the system requirements within budget and schedule
constraints. If the system requires interactive users transacting business-making
decisions based on the contents of a database, then user requirements drive the
architecture. If there are few interactive users on the system, then the architecture is
process-driven.

Examples of interactive user applications:

= Accounting and bookkeeping applications
= Order entry systems

= Email servers

s Web-based retail applications

s Trading systems

Examples of process-driven applications:

= Utility billing systems

s Fraud detection systems

s Direct mail

In many ways, process-driven applications are easier to design than multiuser
applications because the user interface element is eliminated. However, because the
objectives are process-oriented, system architects not accustomed to dealing with large
data volumes and different success factors can become confused. Process-driven
applications draw from the skills sets used in both user-based applications and data
warehousing. Therefore, this book focuses on evolving system architectures for
interactive users.

Designing and Developing for Performance 2-7

System Architecture

Note: Generating a system architecture is not a deterministic
process. It requires careful consideration of business requirements,
technology choices, existing infrastructure and systems, and actual
physical resources, such as budget and manpower.

The following questions should stimulate thought on system architecture, though they
are not a definitive guide to system architecture. These questions demonstrate how
business requirements can influence the architecture, ease of implementation, and
overall performance and availability of a system. For example:

= How many users must the system support?
Most applications fall into one of the following categories:
— Very few users on a lightly-used or exclusive computer

For this type of application, there is usually one user. The focus of the
application design is to make the single user as productive as possible by
providing good response time, yet make the application require minimal
administration. Users of these applications rarely interfere with each other and
have minimal resource conflicts.

- A medium to large number of users in a corporation using shared applications

For this type of application, the users are limited by the number of employees
in the corporation actually transacting business through the system. Therefore,
the number of users is predictable. However, delivering a reliable service is
crucial to the business. The users must share a resource, so design efforts must
address response time under heavy system load, escalation of resource for
each session usage, and room for future growth.

- Aninfinite user population distributed on the Internet

For this type of application, extra engineering effort is required to ensure that
no system component exceeds its design limits. This creates a bottleneck that
halts or destabilizes the system. These applications require complex load
balancing, stateless application servers, and efficient database connection
management. In addition, use statistics and governors to ensure that the user
receives feedback if the database cannot satisfy their requests because of
system overload.

s What will be the user interaction method?

The choices of user interface range from a simple Web browser to a custom client
program.

s Where are the users located?

The distance between users influences how the application is engineered to cope
with network latencies. The location also affects which times of the day are busy,
when it is impossible to perform batch or system maintenance functions.

= What is the network speed?

Network speed affects the amount of data and the conversational nature of the
user interface with the application and database servers. A highly conversational
user interface can communicate with back-end servers on every key stroke or field
level validation. A less conversational interface works on a screen-sent and a
screen-received model. On a slow network, it is impossible to achieve high data
entry speeds with a highly conversational user interface.

2-8 Oracle Database Performance Tuning Guide

Application Design Principles

How much data will the user access, and how much of that data is largely read
only?

The amount of data queried online influences all aspects of the design, from table
and index design to the presentation layers. Design efforts must ensure that user
response time is not a function of the size of the database. If the application is
largely read only, then replication and data distribution to local caches in the
application servers become a viable option. This also reduces workload on the core
transactional server.

What is the user response time requirement?

Consideration of the user type is important. If the user is an executive who
requires accurate information to make split second decisions, then user response
time cannot be compromised. Other types of users, such as users performing data
entry activities, might not need such a high level of performance.

Do users expect 24 hour service?

This is mandatory for today's Internet applications where trade is conducted 24
hours a day. However, corporate systems that run in a single time zone might be
able to tolerate after-hours downtime. You can use this after-hours downtime to
run batch processes or to perform system administration. In this case, it might be
more economic not to run a fully-available system.

Must all changes be made in real time?

It is important to determine whether transactions must be executed within the
user response time, or if they can be queued for asynchronous execution.

The following are secondary questions, which can also influence the design, but really
have more impact on budget and ease of implementation. For example:

How big will the database be?

This influences the sizing of the database server. On servers with a very large
database, it might be necessary to have a bigger computer than dictated by the
workload. This is because the administration overhead with large databases is
largely a function of the database size. As tables and indexes grow, it takes
proportionately more CPUs to allow table reorganizations and index builds to
complete in an acceptable time limit.

What is the required throughput of business transactions?
What are the availability requirements?
Do skills exist to build and administer this application?

What compromises are forced by budget constraints?

Application Design Principles

This section describes the following design decisions that are involved in building
applications:

Simplicity In Application Design
Data Modeling

Table and Index Design

Using Views

SQL Execution Efficiency

Designing and Developing for Performance 2-9

Application Design Principles

= Implementing the Application

s Trends in Application Development

Simplicity In Application Design
Applications are no different than any other designed and engineered product.
Well-designed structures, computers, and tools are usually reliable, easy to use and
maintain, and simple in concept. In the most general terms, if the design looks correct,
then it probably is. This principle should always be kept in mind when building
applications.

Consider the following design issues:

= If the table design is so complicated that nobody can fully understand it, then the
table is probably poorly designed.

= If SQL statements are so long and involved that it would be impossible for any
optimizer to effectively optimize it in real time, then there is probably a bad
statement, underlying transaction, or table design.

» If there are indexes on a table and the same columns are repeatedly indexed, then
there is probably a poor index design.

s If queries are submitted without suitable qualification for rapid response for
online users, then there is probably a poor user interface or transaction design.

= If the calls to the database are abstracted away from the application logic by many
layers of software, then there is probably a bad software development method.

Data Modeling

Data modeling is important to successful relational application design. You must
perform this modeling in a way that quickly represents the business practices. Heated
debates may occur about the correct data model. The important thing is to apply
greatest modeling efforts to those entities affected by the most frequent business
transactions. In the modeling phase, there is a great temptation to spend too much
time modeling the non-core data elements, which results in increased development
lead times. Use of modeling tools can then rapidly generate schema definitions and
can be useful when a fast prototype is required.

Table and Index Design

Table design is largely a compromise between flexibility and performance of core
transactions. To keep the database flexible and able to accommodate unforeseen
workloads, the table design should be very similar to the data model, and it should be
normalized to at least 3rd normal form. However, certain core transactions required by
users can require selective denormalization for performance purposes.

Examples of this technique include storing tables pre-joined, the addition of derived
columns, and aggregate values. Oracle Database provides numerous options for
storage of aggregates and pre-joined data by clustering and materialized view
functions. These features allow a simpler table design to be adopted initially.

Again, focus and resources should be spent on the business critical tables, so that
optimal performance can be achieved. For non-critical tables, shortcuts in design can
be adopted to enable a more rapid application development. However, if prototyping
and testing a non-core table becomes a performance problem, then remedial design
effort should be applied immediately.

2-10 Oracle Database Performance Tuning Guide

Application Design Principles

Index design is also a largely iterative process, based on the SQL generated by
application designers. However, it is possible to make a sensible start by building
indexes that enforce primary key constraints and indexes on known access patterns,
such as a person's name. As the application evolves, and as you perform testing on
realistic amounts of data, you may need to improve the performance of specific
queries by building a better index. Consider the following list of indexing design ideas
when building a new index:

= Appending Columns to an Index or Using Index-Organized Tables
= Using a Different Index Type

= Finding the Cost of an Index

= Serializing within Indexes

s Ordering Columns in an Index

Appending Columns to an Index or Using Index-Organized Tables

One of the easiest ways to speed up a query is to reduce the number of logical I/Os by
eliminating a table access from the execution plan. This can be done by appending to
the index all columns referenced by the query. These columns are the select list
columns, and any required join or sort columns. This technique is particularly useful
in speeding up online applications response times when time-consuming I/Os are
reduced. This is best applied when testing the application with properly sized data for
the first time.

The most aggressive form of this technique is to build an index-organized table (IOT).
However, you must be careful that the increased leaf size of an IOT does not
undermine the efforts to reduce I/0.

Using a Different Index Type

There are several index types available, and each index has benefits for certain
situations. The following list gives performance ideas associated with each index type.

B-Tree Indexes These indexes are the standard index type, and they are excellent for
primary key and highly-selective indexes. Used as concatenated indexes, the database
can use B-tree indexes to retrieve data sorted by the index columns.

Bitmap Indexes These indexes are suitable for low cardinality data. Through
compression techniques, they can generate a large number of rowids with minimal
I/0O. Combining bitmap indexes on non-selective columns allows efficient AND and OR
operations with a great number of rowids with minimal I/O. Bitmap indexes are
particularly efficient in queries with COUNT(), because the query can be satisfied within
the index.

Function-based Indexes These indexes allow access through a B-tree on a value derived
from a function on the base data. Function-based indexes have some limitations with
regards to the use of nulls, and they require that you have the query optimizer
enabled.

Function-based indexes are particularly useful when querying on composite columns
to produce a derived result or to overcome limitations in the way data is stored in the
database. An example is querying for line items in an order exceeding a certain value
derived from (sales price - discount) x quantity, where these were columns in the table.
Another example is to apply the UPPER function to the data to allow case-insensitive
searches.

Designing and Developing for Performance 2-11

Application Design Principles

Partitioned Indexes Partitioning a global index allows partition pruning to take place
within an index access, which results in reduced I/Os. By definition of good range or
list partitioning, fast index scans of the correct index partitions can result in very fast
query times.

Reverse Key Indexes These indexes are designed to eliminate index hot spots on insert
applications. These indexes are excellent for insert performance, but they are limited
because the database cannot use them for index range scans.

Finding the Cost of an Index

Building and maintaining an index structure can be expensive, and it can consume
resources such as disk space, CPU, and I/O capacity. Designers must ensure that the
benefits of any index outweigh the negatives of index maintenance.

Use this simple estimation guide for the cost of index maintenance: each index
maintained by an INSERT, DELETE, or UPDATE of the indexed keys requires about three
times as much resource as the actual DML operation on the table. Thus, if you INSERT
into a table with three indexes, then the insertion is approximately 10 times slower
than an INSERT into a table with no indexes. For DML, and particularly for
INSERT-heavy applications, the index design should be seriously reviewed, which
might require a compromise between the query and INSERT performance.

See Also: Oracle Database Administrator’s Guide to learn how to
monitor index usage

Serializing within Indexes

Use of sequences, or timestamps, to generate key values that are indexed themselves
can lead to database hotspot problems, which affect response time and throughput.
This is usually the result of a monotonically growing key that results in a
right-growing index. To avoid this problem, try to generate keys that insert over the
full range of the index. This results in a well-balanced index that is more scalable and
space efficient. You can achieve this by using a reverse key index or using a cycling
sequence to prefix and sequence values.

Ordering Columns in an Index

Designers should be flexible in defining any rules for index building. Depending on
your circumstances, use one of the following two ways to order the keys in an index:

s Order columns with most selectivity first. This method is the most commonly used
because it provides the fastest access with minimal I/O to the actual rowids
required. This technique is used mainly for primary keys and for very selective
range scans.

s Order columns to reduce I/O by clustering or sorting data. In large range scans,
1/0s can usually be reduced by ordering the columns in the least selective order,
or in a manner that sorts the data in the way it should be retrieved. See Chapter 14,
"Using Indexes and Clusters".

Using Views

Views can speed up and simplify application design. A simple view definition can
mask data model complexity from the programmers whose priorities are to retrieve,
display, collect, and store data.

However, while views provide clean programming interfaces, they can cause
sub-optimal, resource-intensive queries. The worst type of view use is when a view

2-12 Oracle Database Performance Tuning Guide

Application Design Principles

references other views, and when they are joined in queries. In many cases, developers
can satisfy the query directly from the table without using a view. Usually, because of
their inherent properties, views make it difficult for the optimizer to generate the
optimal execution plan.

SQL Execution Efficiency

In the design and architecture phase of any system development, care should be taken
to ensure that the application developers understand SQL execution efficiency. To
achieve this goal, the development environment must support the following
characteristics:

Good database connection management

Connecting to the database is an expensive operation that is highly unscalable.
Therefore, the number of concurrent connections to the database should be
minimized as much as possible. A simple system, where a user connects at
application initialization, is ideal. However, in a Web-based or multitiered
application, where application servers are used to multiplex database connections
to users, this can be difficult. With these types of applications, design efforts
should ensure that database connections are pooled and are not reestablished for
each user request.

Good cursor usage and management

Maintaining user connections is equally important to minimizing the parsing
activity on the system. Parsing is the process of interpreting a SQL statement and
creating an execution plan for it. This process has many phases, including syntax
checking, security checking, execution plan generation, and loading shared
structures into the shared pool. There are two types of parse operations:

- Hard parsing

A SQL statement is submitted for the first time, and no match is found in the
shared pool. Hard parses are the most resource-intensive and unscalable,
because they perform all the operations involved in a parse.

- Soft parsing

A SQL statement is submitted for the first time, and a match is found in the
shared pool. The match can be the result of previous execution by another
user. The SQL statement is shared, which is good for performance. However,
soft parses are not ideal, because they still require syntax and security
checking, which consume system resources.

Because parsing should be minimized as much as possible, application developers
should design their applications to parse SQL statements once and execute them
many times. This is done through cursors. Experienced SQL programmers should
be familiar with the concept of opening and re-executing cursors.

Application developers must also ensure that SQL statements are shared within
the shared pool. To achieve this goal, use bind variables to represent the parts of
the query that change from execution to execution. If this is not done, then the SQL
statement is likely to be parsed once and never re-used by other users. To ensure
that SQL is shared, use bind variables and do not use string literals with SQL
statements. For example:

Statement with string literals:

SELECT * FROM employees
WHERE last_name LIKE 'KING';

Designing and Developing for Performance 2-13

Application Design Principles

Statement with bind variables:

SELECT * FROM employees
WHERE last_name LIKE :1;

The following example shows the results of some tests on a simple OLTP

application:

Test #Users Supported
No Parsing all statements 270

Soft Parsing all statements 150

Hard Parsing all statements 60

Re-Connecting for each Transaction 30

These tests were performed on a four-CPU computer. The differences increase as
the number of CPUs on the system increase. See Chapter 16, "SQL Tuning
Overview" for information about optimizing SQL statements.

Implementing the Application

The choice of development environment and programming language is largely a
function of the skills available in the development team and architectural decisions
made when specifying the application. There are, however, some simple performance
management rules that can lead to scalable, high-performance applications.

1. Choose a development environment suitable for software components, and do not
let it limit your design for performance decisions. If it does, then you probably
chose the wrong language or environment.

s User interface

The programming model can vary between HTML generation and calling the
windowing system directly. The development method should focus on
response time of the user interface code. If HTML or Java is being sent over a
network, then try to minimize network volume and interactions.

= Business logic

Interpreted languages, such as Java and PL/SQL, are ideal to encode business
logic. They are fully portable, which makes upgrading logic relatively easy.
Both languages are syntactically rich to allow code that is easy to read and
interpret. If business logic requires complex mathematical functions, then a
compiled binary language might be needed. The business logic code can be on
the client computer, the application server, and the database server. However,
the application server is the most common location for business logic.

» User requests and resource allocation

Most of this is not affected by the programming language, but tools and fourth
generation languages that mask database connection and cursor management
might use inefficient mechanisms. When evaluating these tools and
environments, check their database connection model and their use of cursors
and bind variables.

» Data management and transactions
Most of this is not affected by the programming language.

2. When implementing a software component, implement its function and not the
functionality associated with other components. Implementing another

2-14 Oracle Database Performance Tuning Guide

Application Design Principles

component's functionality results in sub-optimal designs and implementations.
This applies to all components.

Do not leave gaps in functionality or have software components under-researched
in design, implementation, or testing. In many cases, gaps are not discovered until
the application is rolled out or tested at realistic volumes. This is usually a sign of
poor architecture or initial system specification. Data archival and purge modules
are most frequently neglected during initial system design, build, and
implementation.

When implementing procedural logic, implement in a procedural language, such
as C, Java, or PL/SQL. When implementing data access (queries) or data changes
(DML), use SQL. This rule is specific to the business logic modules of code where
procedural code is mixed with data access (nonprocedural SQL) code. There is
great temptation to put procedural logic into the SQL access. This tends to result in
poor SQL that is resource-intensive. SQL statements with DECODE case statements
are very often candidates for optimization, as are statements with a large amount
of OR predicates or set operators, such as UNION and MINUS.

Cache frequently accessed, rarely changing data that is expensive to retrieve on a
repeated basis. However, make this cache mechanism easy to use, and ensure that
it is indeed cheaper than accessing the data in the original method. This is
applicable to all modules where frequently used data values should be cached or
stored locally, rather than be repeatedly retrieved from a remote or expensive data
store.

The most common examples of candidates for local caching include the following:

s Today's date. SELECT SYSDATE FROM DUAL can account for over 60% of the
workload on a database.

] The current user name.

= Repeated application variables and constants, such as tax rates, discounting
rates, or location information.

s Caching data locally can be further extended into building a local data cache
into the application server middle tiers. This helps take load off the central
database servers. However, care should be taken when constructing local
caches so that they do not become so complex that they cease to give a
performance gain.

= Local sequence generation.

The design implications of using a cache should be considered. For example, if a
user is connected at midnight and the date is cached, then the user's date value
becomes invalid.

Optimize the interfaces between components, and ensure that all components are
used in the most scalable configuration. This rule requires minimal explanation
and applies to all modules and their interfaces.

Use foreign key references. Enforcing referential integrity through an application is
expensive. You can maintain a foreign key reference by selecting the column value
of the child from the parent and ensuring that it exists. The foreign key constraint
enforcement supplied by Oracle—which does not use SQL—is fast, easy to
declare, and does not create network traffic.

Consider setting up action and module names in the application to use with
End-to-End Application Tracing. This allows greater flexibility in tracing workload
problems. See "End-to-End Application Tracing" on page 21-1.

Designing and Developing for Performance 2-15

Workload Testing, Modeling, and Implementation

Trends in Application Development

The two biggest challenges in application development today are the increased use of
Java to replace compiled C or C++ applications, and increased use of object-oriented
techniques, influencing the schema design.

Java provides better portability of code and availability to programmers. However,
there are several performance implications associated with Java. Because Java is an
interpreted language, it is slower at executing similar logic than compiled languages,
such as C. As a result, resource usage of client computers increases. This requires more
powerful CPUs to be applied in the client or middle-tier computers and greater care
from programmers to produce efficient code.

Because Java is an object-oriented language, it encourages insulation of data access
into classes not performing the business logic. As a result, programmers might invoke
methods without knowledge of the efficiency of the data access method being used.
This tends to result in minimal database access and uses the simplest and crudest
interfaces to the database.

With this type of software design, queries do not always include all the WHERE
predicates to be efficient, and row filtering is performed in the Java program. This is
very inefficient. In addition, for DML operations—and especially for INSERTs—single
INSERTs are performed, making use of the array interface impossible. In some cases,
this is made more inefficient by procedure calls. More resources are used moving the
data to and from the database than in the actual database calls.

In general, it is best to place data access calls next to the business logic to achieve the
best overall transaction design.

The acceptance of object-orientation at a programming level has led to the creation of
object-oriented databases within the Oracle Server. This has manifested itself in many
ways, from storing object structures within BLOBs and only using the database
effectively as an indexed card file to the use of the Oracle Database object-relational
features.

If you adopt an object-oriented approach to schema design, then ensure that you do
not lose the flexibility of the relational storage model. In many cases, the
object-oriented approach to schema design ends up in a heavily denormalized data
structure that requires considerable maintenance and REF pointers associated with
objects. Often, these designs represent a step backward to the hierarchical and network
database designs that were replaced with the relational storage method.

In summary;, if you are storing your data in your database for the long-term, and if you
anticipate a degree of ad hoc queries or application development on the same schema,
then the relational storage method probably gives the best performance and flexibility.

Workload Testing, Modeling, and Implementation

This section describes workload estimation, modeling, implementation, and testing.
This section covers the following topics:

» Sizing Data

» Estimating Workloads

= Application Modeling

s Testing, Debugging, and Validating a Design

2-16 Oracle Database Performance Tuning Guide

Workload Testing, Modeling, and Implementation

Sizing Data

You could experience errors in your sizing estimates when dealing with variable
length data if you work with a poor sample set. As data volumes grow, your key
lengths could grow considerably, altering your assumptions for column sizes.

When the system becomes operational, it becomes more difficult to predict database
growth, especially for indexes. Tables grow over time, and indexes are subject to the
individual behavior of the application in terms of key generation, insertion pattern,
and deletion of rows. The worst case is where you insert using an ascending key, and
then delete most rows from the left-hand side but not all the rows. This leaves gaps
and wasted space. If you have index use like this, then ensure that you know how to
use the online index rebuild facility.

DBAs should monitor space allocation for each object and look for objects that may
grow out of control. A good understanding of the application can highlight objects that
may grow rapidly or unpredictably. This is a crucial part of both performance and
availability planning for any system. When implementing the production database,
the design should attempt to ensure that minimal space management takes place when
interactive users are using the application. This applies for all data, temp, and rollback
segments.

Estimating Workloads

Considering the number of variables involved, estimation of workloads for capacity
planning and testing purposes is extremely difficult. However, designers must specify
computers with CPUs, memory, and disk drives, and eventually roll out an
application. There are several techniques used for sizing, and each technique has
merit. When sizing, it is best to use the following two methods to validate your
decision-making process and provide supporting documentation:

= Extrapolating From a Similar System

= Benchmarking

Extrapolating From a Similar System

This is an entirely empirical approach where an existing system of similar
characteristics and known performance is used as a basis system. The specification of
this system is then modified by the sizing specialist according to the known
differences. This approach has merit in that it correlates with an existing system, but it
provides little assistance when dealing with the differences.

This approach is used in nearly all large engineering disciplines when preparing the
cost of an engineering project, such as a large building, a ship, a bridge, or an oil rig. If
the reference system is an order of magnitude different in size from the anticipated
system, then some components may have exceeded their design limits.

Benchmarking

The benchmarking process is both resource and time consuming, and it might not
produce the correct results. By simulating an application in early development or
prototype form, there is a danger of measuring something that has no resemblance to
the actual production system. This sounds strange, but over the many years of
benchmarking customer applications with the database development organization,
Oracle has yet to see reliable correlation between the benchmark application and the
actual production system. This is mainly due to the number of application
inefficiencies introduced in the development process.

Designing and Developing for Performance 2-17

Workload Testing, Modeling, and Implementation

However, benchmarks have been used successfully to size systems to an acceptable
level of accuracy. In particular, benchmarks are very good at determining the actual
I/0O requirements and testing recovery processes when a system is fully loaded.

Benchmarks by their nature stress all system components to their limits. As the
benchmark stresses all components, be prepared to see all errors in application design
and implementation manifest themselves while benchmarking. Benchmarks also test
database, operating system, and hardware components. Because most benchmarks are
performed in a rush, expect setbacks and problems when a system component fails.
Benchmarking is a stressful activity, and it takes considerable experience to get the
most out of a benchmarking exercise.

Application Modeling

Modeling the application can range from complex mathematical modeling exercises to
the classic simple calculations performed on the back of an envelope. Both methods
have merit, with one attempting to be very precise and the other making gross
estimates. The downside of both methods is that they do not allow for implementation
errors and inefficiencies.

The estimation and sizing process is an imprecise science. However, by investigating
the process, some intelligent estimates can be made. The whole estimation process
makes no allowances for application inefficiencies introduced by poor SQL, index
design, or cursor management. A sizing engineer should build in margin for
application inefficiencies. A performance engineer should discover the inefficiencies
and make the estimates look realistic. The Oracle performance method describes how
to discover the application inefficiencies.

Testing, Debugging, and Validating a Design
The testing process mainly consists of functional and stability testing. At some point in

the process, performance testing is performed.

The following list describes some simple rules for performance testing an application.
If correctly documented, then this list provides important information for the
production application and the capacity planning process after the application has
gone live.

= Use the Automatic Database Diagnostic Monitor (ADDM) and SQL Tuning
Adpvisor for design validation

m Test with realistic data volumes and distributions

All testing must be done with fully populated tables. The test database should
contain data representative of the production system in terms of data volume and
cardinality between tables. All the production indexes should be built and the
schema statistics should be populated correctly.

= Use the correct optimizer mode

Perform all testing with the optimizer mode that you plan to use in production.
All Oracle Database research and development effort is focused on the query
optimizer. Therefore, the use of the query optimizer is recommended.

s Test a single user performance

Test a single user on an idle or lightly-used database for acceptable performance. If
a single user cannot achieve acceptable performance under ideal conditions, then
multiple users cannot achieve acceptable performance under real conditions.

s Obtain and document plans for all SQL statements

2-18 Oracle Database Performance Tuning Guide

Deploying New Applications

Obtain an execution plan for each SQL statement. Use this process to verify that
the optimizer is obtaining an optimal execution plan, and that the relative cost of
the SQL statement is understood in terms of CPU time and physical I/Os. This
process assists in identifying the heavy use transactions that require the most
tuning and performance work in the future.

= Attempt multiuser testing

This process is difficult to perform accurately, because user workload and profiles
might not be fully quantified. However, transactions performing DML statements
should be tested to ensure that there are no locking conflicts or serialization
problems.

s Test with the correct hardware configuration

Test with a configuration as close to the production system as possible. Using a
realistic system is particularly important for network latencies, I/O subsystem
bandwidth, and processor type and speed. Failing to use this approach may result
in an incorrect analysis of potential performance problems.

= Measure steady state performance

When benchmarking, it is important to measure the performance under steady
state conditions. Each benchmark run should have a ramp-up phase, where users
are connected to the application and gradually start performing work on the
application. This process allows for frequently cached data to be initialized into
the cache and single execution operations—such as parsing—to be completed
before the steady state condition. Likewise, at the end of a benchmark run, there
should be a ramp-down period, where resources are freed from the system and
users cease work and disconnect.

Deploying New Applications

This section describes the following design decisions involved in deploying
applications:

= Rollout Strategies

m Performance Checklist

Rollout Strategies

When new applications are rolled out, two strategies are commonly adopted:
» Big Bang approach - all users migrate to the new system at once
» Trickle approach - users slowly migrate from existing systems to the new one

Both approaches have merits and disadvantages. The Big Bang approach relies on
reliable testing of the application at the required scale, but has the advantage of
minimal data conversion and synchronization with the old system, because it is simply
switched off. The Trickle approach allows debugging of scalability issues as the
workload increases, but might mean that data must be migrated to and from legacy
systems as the transition takes place.

It is difficult to recommend one approach over the other, because each method has
associated risks that could lead to system outages as the transition takes place.
Certainly, the Trickle approach allows profiling of real users as they are introduced to
the new application, and allows the system to be reconfigured while only affecting the
migrated users. This approach affects the work of the early adopters, but limits the

Designing and Developing for Performance 2-19

Deploying New Applications

load on support services. This means that unscheduled outages only affect a small
percentage of the user population.

The decision on how to roll out a new application is specific to each business. Any
adopted approach has its own unique pressures and stresses. The more testing and
knowledge that you derive from the testing process, the more you realize what is best
for the rollout.

Performance Checklist

To assist in the rollout, build a list of tasks that increase the chance of optimal
performance in production and enable rapid debugging of the application. Do the
following:

1.

When you create the control file for the production database, allow for growth by
setting MAXINSTANCES, MAXDATAFILES, MAXLOGFILES, MAXLOGMEMBERS, and
MAXLOGHISTORY to values higher than what you anticipate for the rollout. This
technique results in more disk space usage and larger control files, but saves time
later should these need extension in an emergency.

Set block size to the value used to develop the application. Export the schema
statistics from the development or test environment to the production database if
the testing was done on representative data volumes and the current SQL
execution plans are correct.

Set the minimal number of initialization parameters. Ideally, most other
parameters should be left at default. If there is more tuning to perform, then this
appears when the system is under load. See Chapter 4, "Configuring a Database
for Performance"” for information about parameter settings in an initial instance
configuration.

Be prepared to manage block contention by setting storage options of database
objects. Tables and indexes that experience high INSERT/UPDATE/DELETE rates
should be created with automatic segment space management. To avoid
contention of rollback segments, use automatic undo management. See Chapter 4,
"Configuring a Database for Performance" for information about undo and
temporary segments.

All SQL statements should be verified to be optimal and their resource usage
understood.

Validate that middleware and programs that connect to the database are efficient
in their connection management and do not logon or logoff repeatedly.

Validate that the SQL statements use cursors efficiently. The database should parse
each SQL statement once and then execute it multiple times. The most common
reason this does not happen is because bind variables are not used properly and
WHERE clause predicates are sent as string literals. If you use precompilers to
develop the application, then make sure to reset the parameters MAXOPENCURSORS,
HOLD_CURSOR, and RELEASE_CURSOR from the default values before precompiling
the application.

Validate that all schema objects have been correctly migrated from the
development environment to the production database. This includes tables,
indexes, sequences, triggers, packages, procedures, functions, Java objects,
synonyms, grants, and views. Ensure that any modifications made in testing are
made to the production system.

2-20 Oracle Database Performance Tuning Guide

Deploying New Applications

10.

As soon as the system is rolled out, establish a baseline set of statistics from the
database and operating system. This first set of statistics validates or corrects any
assumptions made in the design and rollout process.

Start anticipating the first bottleneck (which is inevitable) and follow the Oracle
performance method to make performance improvement. For more information,
see Chapter 3, "Performance Improvement Methods".

Designing and Developing for Performance 2-21

Deploying New Applications

2-22 Oracle Database Performance Tuning Guide

3

Performance Improvement Methods

This chapter discusses Oracle Database improvement methods and contains the
following sections:

s The Oracle Performance Improvement Method

= Emergency Performance Methods

The Oracle Performance Improvement Method

Oracle performance methodology helps you to identify performance problems in an
Oracle database. This involves identifying bottlenecks and fixing them. It is
recommended that changes be made to a system only after you have confirmed that
there is a bottleneck.

Performance improvement, by its nature, is iterative. For this reason, removing the
first bottleneck might not lead to performance improvement immediately, because
another bottleneck might be revealed. Also, in some cases, if serialization points move
to a more inefficient sharing mechanism, then performance could degrade. With
experience, and by following a rigorous method of bottleneck elimination, applications
can be debugged and made scalable.

Performance problems generally result from either a lack of throughput, unacceptable
user/job response time, or both. The problem might be localized between application
modules, or it might be for the entire system.

Before looking at any database or operating system statistics, it is crucial to get
feedback from the most important components of the system: the users of the system
and the people ultimately paying for the application. Typical user feedback includes
statements like the following:

s "The online performance is so bad that it prevents my staff from doing their jobs."
s "The billing run takes too long."

= "When I experience high amounts of Web traffic, the response time becomes
unacceptable, and I am losing customers."

s "l am currently performing 5000 trades a day, and the system is maxed out. Next
month, we roll out to all our users, and the number of trades is expected to
quadruple.”

From candid feedback, it is easy to set critical success factors for any performance
work. Determining the performance targets and the performance engineer's exit
criteria make managing the performance process much simpler and more successful at
all levels. These critical success factors are better defined in terms of real business
goals rather than system statistics.

Performance Improvement Methods 3-1

The Oracle Performance Improvement Method

Some real business goals for these typical user statements might be:
s "The billing run must process 1,000,000 accounts in a three-hour window."

= "Atapeak period on a Web site, the response time must not exceed five seconds
for a page refresh."

s "The system must be able to process 25,000 trades in an eight-hour window."

The ultimate measure of success is the user's perception of system performance. The
performance engineer's role is to eliminate any bottlenecks that degrade performance.
These bottlenecks could be caused by inefficient use of limited shared resources or by
abuse of shared resources, causing serialization. Because all shared resources are
limited, the goal of a performance engineer is to maximize the number of business
operations with efficient use of shared resources. At a very high level, the entire
database server can be seen as a shared resource. Conversely, at a low level, a single
CPU or disk can be seen as shared resources.

You can apply the Oracle performance improvement method until performance goals
are met or deemed impossible. This process is highly iterative. Inevitably, some
investigations may have little or no impact on database performance. Time and
experience are necessary to develop the skills to accurately and quickly pinpoint
critical bottlenecks. However, prior experience can sometimes work against the
experienced engineer who neglects to use the data and statistics available. This type of
behavior encourages database tuning by myth and folklore. This is a very risky,
expensive, and unlikely to succeed method of database tuning.

The Automatic Database Diagnostic Monitor (ADDM) implements parts of the
performance improvement method and analyzes statistics to provide automatic
diagnosis of major performance issues. Using ADDM can significantly shorten the
time required to improve the performance of a system. See Chapter 6, "Automatic
Performance Diagnostics" for a description of ADDM.

Systems are so different and complex that hard and fast rules for performance analysis
are impossible. In essence, the Oracle performance improvement method defines a
way of working, but not a definitive set of rules. With bottleneck detection, the only
rule is that there are no rules! The best performance engineers use the data provided
and think laterally to determine performance problems.

Steps in The Oracle Performance Improvement Method

1. Perform the following initial standard checks:

a. Get candid feedback from users. Determine the performance project's scope
and subsequent performance goals, and performance goals for the future. This
process is key in future capacity planning.

b. Get a full set of operating system, database, and application statistics from the
system when the performance is both good and bad. If these are not available,
then get whatever is available. Missing statistics are analogous to missing
evidence at a crime scene: They make detectives work harder and it is more
time-consuming.

c. Sanity-check the operating systems of all computers involved with user
performance. By sanity-checking the operating system, you look for hardware
or operating system resources that are fully utilized. List any over-used
resources as symptoms for analysis later. In addition, check that all hardware
shows no errors or diagnostics.

2. Check for the top ten most common mistakes with Oracle Database, and
determine if any of these are likely to be the problem. List these as symptoms for

3-2 Oracle Database Performance Tuning Guide

The Oracle Performance Improvement Method

later analysis. These are included because they represent the most likely problems.
ADDM automatically detects and reports nine of these top ten issues. See

Chapter 6, "Automatic Performance Diagnostics" and "Top Ten Mistakes Found in
Oracle Systems" on page 3-4.

3. Build a conceptual model of what is happening on the system using the symptoms
as clues to understand what caused the performance problems. See "A Sample
Decision Process for Performance Conceptual Modeling" on page 3-3.

4. Propose a series of remedy actions and the anticipated behavior to the system,
then apply them in the order that can benefit the application the most. ADDM
produces recommendations each with an expected benefit. A golden rule in
performance work is that you only change one thing at a time and then measure
the differences. Unfortunately, system downtime requirements might prohibit
such a rigorous investigation method. If multiple changes are applied at the same
time, then try to ensure that they are isolated so that the effects of each change can
be independently validated.

5. Validate that the changes made have had the desired effect, and see if the user's
perception of performance has improved. Otherwise, look for more bottlenecks,
and continue refining the conceptual model until your understanding of the
application becomes more accurate.

6. Repeat the last three steps until performance goals are met or become impossible
due to other constraints.

This method identifies the biggest bottleneck and uses an objective approach to
performance improvement. The focus is on making large performance improvements
by increasing application efficiency and eliminating resource shortages and
bottlenecks. In this process, it is anticipated that minimal (less than 10%) performance
gains are made from instance tuning, and large gains (100% +) are made from isolating
application inefficiencies.

A Sample Decision Process for Performance Conceptual Modeling

Conceptual modeling is almost deterministic. However, as you gain experience in
performance tuning, you begin to appreciate that no real rules exist. A flexible
heads-up approach is required to interpret statistics and make good decisions.

For a quick and easy approach to performance tuning, use ADDM. ADDM
automatically monitors your Oracle system and provides recommendations for
solving performance problems should problems occur. For example, suppose a DBA
receives a call from a user complaining that the system is slow. The DBA simply
examines the latest ADDM report to see which of the recommendations should be
implemented to solve the problem. See Chapter 6, "Automatic Performance
Diagnostics" for information about the features that help monitor and diagnose Oracle
databases.

The following steps illustrate how a performance engineer might look for bottlenecks
without using automatic diagnostic features. These steps are only intended as a
guideline for the manual process. With experience, performance engineers add to the
steps involved. This analysis assumes that statistics for both the operating system and
the database have been gathered.

1. Is the response time/batch run time acceptable for a single user on an empty or
lightly loaded computer?

If it is not acceptable, then the application is probably not coded or designed
optimally, and it will never be acceptable in a multiple user situation when system
resources are shared. In this case, get application internal statistics, and get SQL

Performance Improvement Methods 3-3

The Oracle Performance Improvement Method

Trace and SQL plan information. Work with developers to investigate problems in
data, index, transaction SQL design, and potential deferral of work to batch and
background processing.

Is all the CPU being utilized?

If the kernel utilization is over 40%, then investigate the operating system for
network transfers, paging, swapping, or process thrashing. Continue to check CPU
utilization in user space to verify if there are any non-database jobs consuming
CPU on the system limiting the amount of shared CPU resources, such as backups,
file transforms, print queues, and so on. After determining that the database is
using most of the CPU, investigate the top SQL by CPU utilization. These
statements form the basis of all future analysis. Check the SQL and the
transactions submitting the SQL for optimal execution. Oracle Database provides
CPU statistics in V$SQL and V$SQLSTATS.

See Also: Oracle Database Reference for more information on V$SQL
and V$SQLSTATS

If the application is optimal and no inefficiencies exist in the SQL execution, then
consider rescheduling some work to off-peak hours or using a bigger computer.

At this point, the system performance is unsatisfactory, yet the CPU resources are
not fully utilized.

In this case, you have serialization and unscalable behavior within the server. Get
the WAIT_EVENTS statistics from the server, and determine the biggest serialization
point. If there are no serialization points, then the problem is most likely outside
the database, and this should be the focus of investigation. Elimination of WAIT_
EVENTS involves modifying application SQL and tuning database parameters. This
process is very iterative and requires the ability to drill down on the WAIT_EVENTS
systematically to eliminate serialization points.

Top Ten Mistakes Found in Oracle Systems

This section lists the most common mistakes found in Oracle databases. By following
the Oracle performance improvement methodology, you should be able to avoid these
mistakes altogether. If you find these mistakes in your system, then re-engineer the
application where the performance effort is worthwhile. See "Automatic Performance
Tuning Features" on page 1-5 for information about the features that help diagnose
and tune Oracle databases. See Chapter 10, "Instance Tuning Using Performance
Views" for a discussion on how wait event data reveals symptoms of problems that
can be impacting performance.

1.

Bad connection management

The application connects and disconnects for each database interaction. This
problem is common with stateless middleware in application servers. It has over
two orders of magnitude impact on performance, and is totally unscalable.

Bad use of cursors and the shared pool

Not using cursors results in repeated parses. If bind variables are not used, then
there is hard parsing of all SQL statements. This has an order of magnitude impact
in performance, and it is totally unscalable. Use cursors with bind variables that
open the cursor and execute it many times. Be suspicious of applications
generating dynamic SQL.

Bad SQL

3-4 Oracle Database Performance Tuning Guide

The Oracle Performance Improvement Method

Bad SQL is SQL that uses more resources than appropriate for the application
requirement. This can be a decision support systems (DSS) query that runs for
more than 24 hours, or a query from an online application that takes more than a
minute. You should investigate SQL that consumes significant system resources
for potential improvement. ADDM identifies high load SQL. SQL Tuning Advisor
can provide recommendations for improvement. See Chapter 6, "Automatic
Performance Diagnostics" and Chapter 17, "Automatic SQL Tuning".

Use of nonstandard initialization parameters

These might have been implemented based on poor advice or incorrect
assumptions. Most databases provide acceptable performance using only the set of
basic parameters. In particular, parameters associated with SPIN_COUNT on latches
and undocumented optimizer features can cause a great deal of problems that can
require considerable investigation.

Likewise, optimizer parameters set in the initialization parameter file can override
proven optimal execution plans. For these reasons, schemas, schema statistics, and
optimizer settings should be managed as a group to ensure consistency of
performance.

See Also:

» Oracle Database Administrator’s Guide for information about
initialization parameters and database creation

s Oracle Database Reference for details on initialization parameters

s '"Performance Considerations for Initial Instance Configuration"
on page 4-1 for information about parameters and settings in an
initial instance configuration

Getting database I/O wrong

Many sites lay out their databases poorly over the available disks. Other sites
specify the number of disks incorrectly, because they configure disks by disk space
and not I/O bandwidth. See Chapter 8, "I/O Configuration and Design".

Online redo log setup problems

Many sites run with too few online redo log files and files that are too small. Small
redo log files cause system checkpoints to continuously put a high load on the
buffer cache and I/O system. If too few redo log files exist, then the archive cannot
keep up, and the database must wait for the archiver to catch up. See Chapter 4,
"Configuring a Database for Performance" for information about sizing redo log
files for performance.

Serialization of data blocks in the buffer cache due to lack of free lists, free list
groups, transaction slots (INITRANS), or shortage of rollback segments.

This is particularly common on INSERT-heavy applications, in applications that
have raised the block size above 8K, or in applications with large numbers of
active users and few rollback segments. Use automatic segment-space
management (ASSM) and automatic undo management to solve this problem.

Long full table scans

Long full table scans for high-volume or interactive online operations could
indicate poor transaction design, missing indexes, or poor SQL optimization. Long
table scans, by nature, are I/O intensive and unscalable.

High amounts of recursive (SYS) SQL

Performance Improvement Methods 3-5

Emergency Performance Methods

Large amounts of recursive SQL executed by SYS could indicate space
management activities, such as extent allocations, taking place. This is unscalable
and impacts user response time. Use locally managed tablespaces to reduce
recursive SQL due to extent allocation. Recursive SQL executed under another
user ID is probably SQL and PL/SQL, and this is not a problem.

10. Deployment and migration errors

In many cases, an application uses too many resources because the schema owning
the tables has not been successfully migrated from the development environment
or from an older implementation. Examples of this are missing indexes or incorrect
statistics. These errors can lead to sub-optimal execution plans and poor
interactive user performance. When migrating applications of known
performance, export the schema statistics to maintain plan stability using the
DBMS_STATS package.

Although these errors are not directly detected by ADDM, ADDM highlights the
resulting high load SQL.

Emergency Performance Methods

This section provides techniques for dealing with performance emergencies. You
presumably have a methodology for establishing and improving application
performance. However, in an emergency situation, a component of the system has
changed to transform it from a reliable, predictable system to one that is unpredictable
and not satisfying user requests.

In this case, the performance engineer must rapidly determine what has changed and
take appropriate actions to resume normal service as quickly as possible. In many
cases, it is necessary to take immediate action, and a rigorous performance
improvement project is unrealistic.

After addressing the immediate performance problem, the performance engineer must
collect sufficient debugging information either to get better clarity on the performance
problem or to at least ensure that it does not happen again.

The method for debugging emergency performance problems is the same as the
method described in the performance improvement method earlier in this book.
However, shortcuts are taken in various stages because of the timely nature of the
problem. Keeping detailed notes and records of facts found as the debugging process
progresses is essential for later analysis and justification of any remedial actions. This
is analogous to a doctor keeping good patient notes for future reference.

Steps in the Emergency Performance Method

The Emergency Performance Method is as follows:

1. Survey the performance problem and collect the symptoms of the performance
problem. This process should include the following:

s User feedback on how the system is underperforming. Is the problem
throughput or response time?

= Ask the question, "What has changed since we last had good performance?"
This answer can give clues to the problem. However, getting unbiased
answers in an escalated situation can be difficult. Try to locate some reference
points, such as collected statistics or log files, that were taken before and after
the problem.

3-6 Oracle Database Performance Tuning Guide

Emergency Performance Methods

= Use automatic tuning features to diagnose and monitor the problem. See
"Automatic Performance Tuning Features" on page 1-5 for information about
the features that help diagnose and tune Oracle systems. In addition, you can
use Oracle Enterprise Manager performance features to identify top SQL and
sessions.

Sanity-check the hardware utilization of all components of the application system.
Check where the highest CPU utilization is, and check the disk, memory usage,
and network performance on all the system components. This quick process
identifies which tier is causing the problem. If the problem is in the application,
then shift analysis to application debugging. Otherwise, move on to database
server analysis.

Determine if the database server is constrained on CPU or if it is spending time
waiting on wait events. If the database server is CPU-constrained, then investigate
the following:

= Sessions that are consuming large amounts of CPU at the operating system
level and database; check V$SESS_TIME_MODEL for database CPU usage

= Sessions or statements that perform many buffer gets at the database level;
check V$SESSTAT and V$SQLSTATS

= Execution plan changes causing sub-optimal SQL execution; these can be
difficult to locate

= Incorrect setting of initialization parameters
= Algorithmic issues caused by code changes or upgrades of all components

If the database sessions are waiting on events, then follow the wait events listed in
V$SESSION_WAIT to determine what is causing serialization. The VSACTIVE_
SESSION_HISTORY view contains a sampled history of session activity which you
can use to perform diagnosis even after an incident has ended and the system has
returned to normal operation. In cases of massive contention for the library cache,
it might not be possible to logon or submit SQL to the database. In this case, use
historical data to determine why there is suddenly contention on this latch. If most
waits are for I/O, then examine VSACTIVE_SESSION_HISTORY to determine the SQL
being run by the sessions that are performing all of the inputs and outputs. See
Chapter 10, "Instance Tuning Using Performance Views" for a discussion on wait
events.

Apply emergency action to stabilize the system. This could involve actions that
take parts of the application off-line or restrict the workload that can be applied to
the system. It could also involve a system restart or the termination of job in
process. These naturally have service level implications.

Validate that the system is stable. Having made changes and restrictions to the
system, validate that the system is now stable, and collect a reference set of
statistics for the database. Now follow the rigorous performance method described
earlier in this book to bring back all functionality and users to the system. This
process may require significant application re-engineering before it is complete.

Performance Improvement Methods 3-7

Emergency Performance Methods

3-8 Oracle Database Performance Tuning Guide

Part Il

Optimizing Instance Performance

Part I1II describes how to tune various elements of your database system to optimize
performance of an Oracle database instance.

The chapters in this part are:

» Chapter 4, "Configuring a Database for Performance"
» Chapter 5, "Automatic Performance Statistics"

» Chapter 6, "Automatic Performance Diagnostics"

» Chapter 7, "Configuring and Using Memory"

s Chapter 8, "I/O Configuration and Design"

s Chapter 9, "Managing Operating System Resources"

» Chapter 10, "Instance Tuning Using Performance Views"

4

Configuring a Database for Performance

This chapter contains an overview of the Oracle methodology for configuring a
database for performance. Although performance modifications can be made to Oracle
Database on an ongoing basis, significant benefits can be gained by proper initial
configuration of the database.

This chapter contains the following sections:
» Performance Considerations for Initial Instance Configuration
s Creating and Maintaining Tables for Optimal Performance

s Performance Considerations for Shared Servers

Performance Considerations for Initial Instance Configuration

This section discusses some initial database instance configuration options that have
important performance impacts.

If you use the Database Configuration Assistant (DBCA) to create a database, then the
supplied seed database includes the necessary basic initialization parameters and
meets the performance recommendations that are discussed in this chapter.

See Also:

n Oracle Database Administrator’s Guide to learn how to create a
database with the Database Configuration Assistant

n Oracle Database Administrator’s Guide to learn how to create a
database with a SQL statement

Initialization Parameters

A running Oracle database instance is configured using initialization parameters,
which are set in the initialization parameter file. These parameters influence the
behavior of the running instance, including influencing performance. In general, a
very simple initialization file with few relevant settings covers most situations, and the
initialization file should not be the first place you expect to do performance tuning,
except for the few parameters shown in Table 4-2.

Table 4-1 describes the parameters necessary in a minimal initialization file. Although
these parameters are necessary, they have no performance impact.

Configuring a Database for Performance 4-1

Performance Considerations for Initial Instance Configuration

Table 4-1 Necessary Initialization Parameters Without Performance Impact

Parameter Description

DB_NAME Name of the database. This should match the ORACLE_SID
environment variable.

DB_DOMAIN Location of the database in Internet dot notation.

OPEN_CURSORS

CONTROL_FILES

DB_FILES

Limit on the maximum number of cursors (active SQL
statements) for each session. The setting is
application-dependent; 500 is recommended.

Set to contain at least two files on different disk drives to
prevent failures from control file loss.

Set to the maximum number of files that can assigned to the
database.

See Also: Oracle Database Administrator’s Guide to learn more
about these initialization parameters

Table 4-2 includes the most important parameters to set with performance

implications:

Table 4-2 Important Initialization Parameters With Performance Impact

Parameter

Description

COMPATIBLE

DB_BLOCK_SIZE

SGA_TARGET

PGA_AGGREGATE_TARGET

PROCESSES

SESSIONS

UNDO_MANAGEMENT

UNDO_TABLESPACE

Specifies the release with which the Oracle database must
maintain compatibility. It lets you take advantage of the
maintenance improvements of a new release immediately in your
production systems without testing the new functionality in your
environment. If your application was designed for a specific
release of Oracle Database, and you are actually installing a later
release, then you might want to set this parameter to the version
of the previous release.

Sets the size of the Oracle database blocks stored in the database
files and cached in the SGA. The range of values depends on the
operating system, but it is typically 8192 for transaction
processing systems and higher values for database warehouse
systems.

Specifies the total size of all SGA components. If SGA_TARGET is
specified, then the buffer cache (DB_CACHE_SIZE), Java pool (JAVA_
POOL_SIZE), large pool (LARGE_POOL_SIZE), and shared pool
(SHARED_POOL_SIZE) memory pools are automatically sized. See
"Automatic Shared Memory Management" on page 7-2.

Specifies the target aggregate PGA memory available to all server
processes attached to the instance. See "PGA Memory
Management" on page 7-39.

Sets the maximum number of processes that can be started by that
instance. This is the most important primary parameter to set,
because many other parameter values are deduced from this.

This is set by default from the value of processes. However, if you
are using the shared server, then the deduced value is likely to be
insufficient.

Specifies the undo space management mode used by the
database. The default is AUTO. If unspecified, the database uses
AUTO.

Specifies the undo tablespace to be used when an instance starts.

4-2 Oracle Database Performance Tuning Guide

Performance Considerations for Initial Instance Configuration

See Also:
s Chapter 7, "Configuring and Using Memory"

» Oracle Database Reference for information about initialization
parameters

» Oracle Streams Concepts and Administration for information
about the STREAMS_POOL_SIZE initialization parameter

Configuring Undo Space

The database uses undo space to store data used for read consistency, recovery, and
rollback statements. This data exists in one or more undo tablespaces. If you use the
Database Configuration Assistant (DBCA) to create a database, then the undo
tablespace is created automatically. To manually create an undo tablespace, add the
UNDO TABLESPACE clause to the CREATE DATABASE statement.

To automate the management of undo data, Oracle Database uses automatic undo
management, which transparently creates and manages undo segments.To enable
automatic undo management, set the UNDO_MANAGEMENT initialization parameter to
AUTO (the default setting). If unspecified, then the UNDO_MANAGEMENT initialization
parameter uses the AUTO setting. Oracle strongly recommends using automatic undo
management because it significantly simplifies database management and eliminates
the need for any manual tuning of undo (rollback) segments. Manual undo
management using rollback segments is supported for backward compatibility.

The V$UNDOSTAT view contains statistics for monitoring and tuning undo space. Using
this view, you can better estimate the amount of undo space required for the current
workload. Oracle Database also uses this information to help tune undo usage. The
VSROLLSTAT view contains information about the behavior of the undo segments in the
undo tablespace.

See Also:

s Oracle Database 2 Day DBA and Oracle Enterprise Manager
online help to learn about the Undo Management Advisor

s Oracle Database Administrator’s Guide for information about
managing undo space using automatic undo management

» Oracle Database Reference to learn about the VSROLLSTAT and
VSUNDOSTAT views

Sizing Redo Log Files

The size of the redo log files can influence performance, because the behavior of the
database writer and archiver processes depend on the redo log sizes. Generally, larger
redo log files provide better performance. Undersized log files increase checkpoint
activity and reduce performance.

Although the size of the redo log files does not affect LGWR performance, it can affect
DBWR and checkpoint behavior. Checkpoint frequency is affected by several factors,
including log file size and the setting of the FAST_START_MTTR_TARGET initialization
parameter. If the FAST_START_MTTR_TARGET parameter is set to limit the instance
recovery time, Oracle Database automatically tries to checkpoint as frequently as
necessary. Under this condition, the size of the log files should be large enough to
avoid additional checkpointing due to under sized log files. The optimal size can be
obtained by querying the OPTIMAL LOGFILE_SIZE column from the V$INSTANCE_

Configuring a Database for Performance 4-3

Performance Considerations for Initial Instance Configuration

RECOVERY view. You can also obtain sizing advice on the Redo Log Groups page of
Oracle Enterprise Manager.

It may not always be possible to provide a specific size recommendation for redo log
files, but redo log files in the range of 100 MB to a few gigabytes are considered
reasonable. Size online redo log files according to the amount of redo your system
generates. A rough guide is to switch log files at most once every 20 minutes.

See Also: Oracle Database Administrator’s Guide for information
about managing the online redo log

Creating Subsequent Tablespaces

If you use the Database Configuration Assistant (DBCA) to create a database, then the
seed database automatically includes the necessary tablespaces. If you choose not to
use DBCA, then you must create extra tablespaces after creating the database.

All databases should have several tablespaces in addition to the SYSTEM and SYSAUX
tablespaces. These additional tablespaces include:

= A temporary tablespace, which is used for operations such as sorting

= Anundo tablespace to contain information for read consistency, recovery, and
undo statements

= Atleast one tablespace for application use (in most cases, applications require
several tablespaces)

For extremely large tablespaces with many data files, you can run multiple ALTER
TABLESPACE . . . ADD DATAFILE statements in parallel. During tablespace creation, the
data files that make up the tablespace are initialized with special empty block images.
Temporary files are not initialized.

Oracle Database does this to ensure that it can write all data files in their entirety, but
this can obviously be a lengthy process if done serially. Therefore, run multiple CREATE
TABLESPACE statements concurrently to speed up tablespace creation. For permanent
tables, the choice between local and global extent management on tablespace creation
can greatly affect performance. For any permanent tablespace that has moderate to
large insert, modify, or delete operations compared to reads, choose local extent
management.

Creating Permanent Tablespaces - Automatic Segment-Space Management

For permanent tablespaces, Oracle recommends using automatic segment-space
management. Such tablespaces, often referred to as bitmap tablespaces, are locally
managed tablespaces with bitmap segment space management.

See Also:

» Oracle Database Concepts for a discussion of free space
management

s Oracle Database Administrator’s Guide for more information on
creating and using automatic segment-space management for
tablespaces

Creating Temporary Tablespaces

Properly configuring the temporary tablespace helps optimize disk sort performance.
Temporary tablespaces can be dictionary-managed or locally managed. Oracle

4-4 Oracle Database Performance Tuning Guide

Creating and Maintaining Tables for Optimal Performance

recommends the use of locally managed temporary tablespaces with a UNIFORM extent
size of 1 MB.

You should monitor temporary tablespace activity to check how many extents the
database allocates for the temporary segment. If an application extensively uses
temporary tables, as in a situation when many users are concurrently using temporary
tables, then the extent size could be set smaller, such as 256K, because every usage
requires at least one extent. The EXTENT MANAGEMENT LOCAL clause is optional for
temporary tablespaces because all temporary tablespaces are created with locally
managed extents of a uniform size. The default for SIZE is 1M.

See Also:

»s Oracle Database Administrator’s Guide for more information on
managing temporary tablespaces

s Oracle Database Concepts for more information on temporary
tablespaces

» Oracle Database SQL Language Reference for more information on
using the CREATE and ALTER TABLESPACE statements with the
TEMPORARY clause

Creating and Maintaining Tables for Optimal Performance

When installing applications, an initial step is to create all necessary tables and
indexes. When you create a segment, such as a table, the database allocates space for
the data. If subsequent database operations cause the data volume to increase and
exceed the space allocated, then Oracle Database extends the segment.

When creating tables and indexes, note the following:
= Specify automatic segment-space management for tablespaces

In this way Oracle Database automatically manages segment space for best
performance.

= Set storage options carefully

Applications should carefully set storage options for the intended use of the table
or index. This includes setting the value for PCTFREE. Note that using automatic
segment-space management eliminates the necessity of specifying PCTUSED.

Note: Use of free lists is not recommended. To use automatic
segment-space management, create locally managed tablespaces,
with the segment space management clause set to AUTO.

Table Compression

You can store heap-organized tables in a compressed format that is transparent for any
kind of application. Compressed data in a database block is self-contained, which
means that all information needed to re-create the uncompressed data in a block is
available within the block. A block is also compressed in the buffer cache. Table
compression not only reduces the disk storage but also the memory usage, specifically
the buffer cache requirements. Performance improvements are accomplished by
reducing the amount of necessary I/O operations for accessing a table and by
increasing the probability of buffer cache hits.

Configuring a Database for Performance 4-5

Creating and Maintaining Tables for Optimal Performance

Oracle Database has an advanced compression option that enables you to boost the
performance of any type of application workload—including data warehousing and
OLTP applications—while reducing the disk storage that is required by the database.
You can use the advanced compression feature for all types of data, including
structured data, unstructured data, backup data, and network data.

Estimating the Compression factor

Table compression works by eliminating column value repetitions within individual
blocks. Duplicate values in all the rows and columns in a block are stored once at the
beginning of the block, in what is called a symbol table for that block. All occurrences
of such values are replaced with a short reference to the symbol table. The
compression is higher in blocks that have more repeated values.

Before compressing large tables you should estimate the expected compression factor.
The compression factor is defined as the number of blocks necessary to store the
information in an uncompressed form divided by the number of blocks necessary for a
compressed storage. The compression factor can be estimated by sampling a small
number of representative data blocks of the table to be compressed and comparing the
average number of records for each block for the uncompressed and compressed case.
Experience shows that approximately 1000 data blocks provides a very accurate
estimation of the compression factor. Note that the more blocks you are sampling, the
more accurate the result become.

Tuning to Achieve a Better Compression Ratio

Oracle Database achieves a good compression factor in many cases with no special
tuning. As a DBA or application developer, you can try to tune the compression factor
by reorganizing the records when the compression takes place. Tuning can improve
the compression factor slightly in some cases and substantially in other cases.

To improve the compression factor you must increase the likelihood of value
repetitions within a data block. The achievable compression factor depends on the
cardinality of a specific column or column pairs (representing the likelihood of column
value repetitions) and on the average row length of those columns. Table compression
not only compresses duplicate values of a single column but tries to use multi-column
value pairs whenever possible. Without a detailed understanding of the data
distribution it is very difficult to predict the most optimal order.

See Also: Oracle Database Data Warehousing Guide for information
about table compression and partitions

Reclaiming Unused Space

Over time, it is common for segment space to become fragmented or for a segment to
acquire a lot of free space as the result of update and delete operations. The resulting
sparsely populated objects can suffer performance degradation during queries and
DML operations.

Oracle Database provides a Segment Advisor that provides advice on whether an
object has space available for reclamation based on the level of space fragmentation
within an object.

See Also: Oracle Database Administrator’s Guide and Oracle
Database 2 Day DBA to learn about the Segment Advisor

If an object does have space available for reclamation, then you can compact and
shrink segments or deallocate unused space at the end of a segment.

4-6 Oracle Database Performance Tuning Guide

Performance Considerations for Shared Servers

Indexing Data

See Also:

n Oracle Database Administrator’s Guide for a discussion of
reclaiming unused space

» Oracle Database SQL Language Reference for details about SQL
statements used to shrink segments or deallocate unused space

The most efficient time to create indexes is after data has been loaded. In this way,
space management becomes simpler, and no index maintenance takes place for each
row inserted. SQL*Loader automatically uses this technique, but if you are using other
methods to do initial data load, then you may need to create indexes manually.
Additionally, you can perform index creation in parallel using the PARALLEL clause of
the CREATE INDEX statement. However, SQL*Loader is not able to parallelize index
creation, so you must manually create indexes in parallel after loading data.

See Also: Oracle Database Utilities for information about
SQL*Loader

Specifying Memory for Sorting Data

During index creation on tables that contain data, the data must be sorted. This sorting
is done in the fastest possible way; if all available memory is used for sorting. Oracle
recommends that you enable automatic sizing of SQL working areas by setting the
PGA_AGGREGATE_TARGET initialization parameter.

See Also:

= "PGA Memory Management" on page 7-39 for information
about PGA memory management

» Oracle Database Reference for information about the PGA_
AGGREGATE_TARGET initialization parameter

Performance Considerations for Shared Servers

Using shared servers reduces the number of processes and the amount of memory
consumed on the database host. Shared servers are beneficial for databases where
there are many OLTP users performing intermittent transactions.

Using shared servers rather than dedicated servers is also generally better for systems
that have a high connection rate to the database. With shared servers, when a connect
request is received, a dispatcher is available to handle concurrent connection requests.
With dedicated servers, however, a connection-specific dedicated server is sequentially
initialized for each connection request.

Performance of certain database features can improve when a shared server
architecture is used, and performance of certain database features can degrade slightly
when a shared server architecture is used. For example, a session can be prevented
from migrating to another shared server while parallel execution is active.

A session can remain nonmigratable even after a request from the client has been
processed, because not all the user information has been stored in the UGA. If a server
were to process the request from the client, then the part of the user state that was not
stored in the UGA would be inaccessible. To avoid this situation, individual shared
servers often need to remain bound to a user session.

Configuring a Database for Performance 4-7

Performance Considerations for Shared Servers

See Also:

s Oracle Database Administrator’s Guide to learn how to manage
shared servers

n Oracle Database Net Services Administrator’s Guide to learn how
to configure dispatchers for shared servers

When using some features, you may need to configure more shared servers, because
some servers might be bound to sessions for an excessive amount of time.

This section discusses how to reduce contention for processes used by Oracle Database
architecture:

s Identifying Contention Using the Dispatcher-Specific Views

s Identifying Contention for Shared Servers

Identifying Contention Using the Dispatcher-Specific Views

The following views provide dispatcher performance statistics:
= VSDISPATCHER: general information about dispatcher processes
= VSDISPATCHER_RATE: dispatcher processing statistics

The V$DISPATCHER_RATE view contains current, average, and maximum dispatcher
statistics for several categories. Statistics with the prefix CUR_ are statistics for the
current sample. Statistics with the prefix AVG_ are the average values for the statistics
after the collection period began. Statistics with the prefix MAX_ are the maximum
values for these categories after statistics collection began.

To assess dispatcher performance, query the V$DISPATCHER_RATE view and compare
the current values with the maximums. If your present system throughput provides
adequate response time and current values from this view are near the average and
less than the maximum, then you likely have an optimally tuned shared server
environment.

If the current and average rates are significantly less than the maximums, then
consider reducing the number of dispatchers. Conversely, if current and average rates
are close to the maximums, then you might need to add more dispatchers. A general
rule is to examine V$DISPATCHER_RATE statistics during both light and heavy system
use periods. After identifying your shared server load patterns, adjust your
parameters accordingly.

If necessary, you can also mimic processing loads by running system stress tests and
periodically polling V$DISPATCHER_RATE statistics. Proper interpretation of these
statistics varies from platform to platform. Different types of applications also can
cause significant variations on the statistical values recorded in V$DISPATCHER_RATE.

See Also:

» Oracle Database Reference for detailed information about the
V$DISPATCHER and V$SDISPATCHER_RATE views

Reducing Contention for Dispatcher Processes
To reduce contention, consider the following:

» Adding dispatcher processes

4-8 Oracle Database Performance Tuning Guide

Performance Considerations for Shared Servers

The total number of dispatcher processes is limited by the value of the
initialization parameter MAX_DISPATCHERS. You might need to increase this value
before adding dispatcher processes.

= Enabling connection pooling

When system load increases and dispatcher throughput is maximized, it is not
necessarily a good idea to immediately add more dispatchers. Instead, consider
configuring the dispatcher to support more users with connection pooling.

= Enabling Session Multiplexing

Multiplexing is used by a connection manager process to establish and maintain
network sessions from multiple users to individual dispatchers. For example,
several user processes can connect to one dispatcher by way of a single connection
from a connection manager process. Session multiplexing is beneficial because it
maximizes use of the dispatcher process connections. Multiplexing is also useful
for multiplexing database link sessions between dispatchers.

See Also:

s Oracle Database Administrator's Guide to learn how to configure
dispatcher processes

» Oracle Database Net Services Administrator’s Guide to learn how
to configure connection pooling

» Oracle Database Reference to learn about the DISPATCHERS and
MAX_DISPATCHERS initialization parameters

Identifying Contention for Shared Servers

Steadily increasing wait times in the requests queue indicate contention for shared
servers. To examine wait time data, use the dynamic performance view V$QUEUE. This
view contains statistics showing request queue activity for shared servers. By default,
this view is available only to the user SYS and to other users with SELECT ANY TABLE
system privilege, such as SYSTEM. Table 4-3 lists the columns showing the wait times
for requests and the number of requests in the queue.

Table 4-3 Wait Time and Request Columns in VSQUEUE

Column Description

WAIT Displays the total waiting time, in hundredths of a second, for
all requests that have ever been in the queue

TOTALQ Displays the total number of requests that have ever been in
the queue

Monitor these statistics occasionally while your application is running by issuing the
following SQL statement:
SELECT DECODE (TOTALQ, 0, 'No Requests',

WAIT/TOTALQ || ' HUNDREDTHS OF SECONDS') "AVERAGE WAIT TIME PER REQUESTS"

FROM VSQUEUE
WHERE TYPE = 'COMMON';

This query returns the results of a calculation that show the following;:

AVERAGE WAIT TIME PER REQUEST

.090909 HUNDREDTHS OF SECONDS

Configuring a Database for Performance 4-9

Performance Considerations for Shared Servers

From the result, you can tell that a request waits an average of 0.09 hundredths of a
second in the queue before processing.

You can also determine how many shared servers are currently running by issuing the
following query:

SELECT COUNT(*) "Shared Server Processes"
FROM VS$SHARED_SERVER
WHERE STATUS != 'QUIT';

The result of this query could look like the following;:

Shared Server Processes

If you detect resource contention with shared servers, then first ensure that this is not a
memory contention issue by examining the shared pool and the large pool. If
performance remains poor, then you might want to create more resources to reduce
shared server process contention. You can do this by modifying the optional server
process initialization parameters:

s MAX DISPATCHERS
s MAX SHARED_SERVERS
s DISPATCHERS

= SHARED_SERVERS

See Also: Oracle Database Administrator’s Guide to learn how to set
the shared server process initialization parameters

4-10 Oracle Database Performance Tuning Guide

O

Automatic Performance Statistics

This chapter discusses the gathering of performance statistics. This chapter contains
the following topics:

s Overview of Data Gathering
s Overview of the Automatic Workload Repository

= Managing the Automatic Workload Repository

Overview of Data Gathering

To effectively diagnose performance problems, statistics must be available. Oracle
Database generates many types of cumulative statistics for the system, sessions, and
individual SQL statements. Oracle Database also tracks cumulative statistics on
segments and services. When analyzing a performance problem in any of these scopes,
you typically look at the change in statistics (delta value) over the period you are
interested in. Specifically, you look at the difference between the cumulative value of a
statistic at the start of the period and the cumulative value at the end.

Cumulative values for statistics are generally available through dynamic performance
views, such as the V$SESSTAT and V$SYSSTAT views. Note that the cumulative values in
dynamic views are reset when the database instance is shutdown. The Automatic
Workload Repository (AWR) automatically persists the cumulative and delta values
for most of the statistics at all levels except the session level. This process is repeated
on a regular time period and the result is called an AWR snapshot. The delta values
captured by the snapshot represent the changes for each statistic over the time period.
See "Overview of the Automatic Workload Repository" on page 5-8.

A metric is another type of statistic collected by Oracle Database. A metric is defined
as the rate of change in some cumulative statistic. That rate can be measured against a
variety of units, including time, transactions, or database calls. For example, the
number database calls per second is a metric. Metric values are exposed in some V$
views, where the values are the average over a fairly small time interval, typically 60
seconds. A history of recent metric values is available through v$ views, and some
data is also persisted by AWR snapshots.

A third type of statistical data collected by Oracle is sampled data. The active session
history (ASH) sampler performs the sampling. ASH samples the current state of all
active sessions. The database collects this data into memory, where you can access it
with a v$ view. AWR snapshot processing also writes it to persistent storage. See
"Active Session History" on page 5-3.

A powerful tool for diagnosing performance problems is the use of statistical
baselines. A statistical baseline is collection of statistic rates usually taken over time
period where the system is performing well at peak load. Comparing statistics

Automatic Performance Statistics 5-1

Overview of Data Gathering

captured during a period of bad performance to a baseline helps discover specific
statistics that have increased significantly and could be the cause of the problem.

AWR supports the capture of baseline data by enabling you to specify and preserve a
pair or range of AWR snapshots as a baseline. Carefully consider the time period you
choose as a baseline; the baseline should be a good representation of the peak load on
the system. In the future, you can compare these baselines with snapshots captured
during periods of poor performance.

Oracle Enterprise Manager is the recommended tool for viewing both real time data in
the dynamic performance views and historical data from the AWR history tables.
Enterprise Manager can also be used to capture operating system and network
statistical data that can be correlated with AWR data. For more information, see Oracle
Database 2 Day + Performance Tuning Guide.

This section covers the following topics:
= Database Statistics
= Operating System Statistics

= Interpreting Statistics

Database Statistics

Database statistics provide information on the type of load on the database and the
internal and external resources used by the database. This section describes some of
the more important statistics.

Wait Events

Wait events are statistics that are incremented by a server process or thread to indicate
that it had to wait for an event to complete before being able to continue processing.
Wait event data reveals various symptoms of problems that might be impacting
performance, such as latch contention, buffer contention, and I/O contention.

To enable easier high-level analysis of the wait events, events are grouped into classes.
The classes include: Administrative, Application, Cluster, Commit, Concurrency,
Configuration, Idle, Network, Other, Scheduler, System I/0O, and User 1/0O.

The wait classes are based on a common solution that usually applies to fixing a
problem with the wait event. For example, exclusive TX locks are generally an
application level issue and HW locks are generally a configuration issue.

The following list includes common examples of the waits in some of the classes:
= Application: locks waits caused by row level locking or explicit lock commands
s Commit: waits for redo log write confirmation after a commit

s Idle: wait events that signify the session is inactive, such as SQL*Net message from
client

s Network: waits for data to be sent over the network
s User I/O: wait for blocks to be read off a disk

Wait event statistics for an instance include statistics for both background and
foreground processes. Because you would typically focus your effort in tuning
foreground activities, overall instance activity is broken down into foreground and
background statistics in the relevant v$ views to facilitate tuning.

The V$SYSTEM_EVENT view shows wait event statistics for the foreground activities of
an instance and the wait event statistics for the instance. The V$SYSTEM_WAIT CLASS

5-2 Oracle Database Performance Tuning Guide

Overview of Data Gathering

view shows these foreground and wait event instance statistics after aggregating to
wait classes. VSSESSION_EVENT and V$SESSION_WAIT CLASS show wait event and wait
class statistics at the session level.

See Also: Oracle Database Reference for more information about
Oracle wait events

Time Model Statistics

When tuning an Oracle database, each component has its own set of statistics. To look
at the system as a whole, it is necessary to have a common scale for comparisons. For
this reason, most Oracle Database advisories and reports describe statistics in terms of
time. In addition, the V$SESS_TIME_MODEL and V$SYS_TIME_MODEL views provide time
model statistics. Using the common time instrumentation helps to identify quantitative
effects on the database operations.

The most important of the time model statistics is DB time. This statistics represents the
total time spent in database calls and is an indicator of the total instance workload. It is
calculated by aggregating the CPU and wait times of all sessions not waiting on idle
wait events (non-idle user sessions).

DB time is measured cumulatively from the time of instance startup. Because DB time it
is calculated by combining the times from all non-idle user sessions, it is possible that
the DB time can exceed the actual time elapsed after the instance started. For example,
an instance that has been running for 30 minutes could have four active user sessions
whose cumulative DB time is approximately 120 minutes.

The objective for tuning an Oracle system could be stated as reducing the time that
users spend in performing some action on the database, or simply reducing DB time.
Other time model statistics provide quantitative effects (in time) on specific actions,
such as logon operations and hard and soft parses.

See Also: Oracle Database Reference to learn about the V$SESS_
TIME_MODEL and V$SYS_TIME_MODEL views

Active Session History

The V$ACTIVE_SESSION_HISTORY view provides sampled session activity in the
instance. Active sessions are sampled every second and are stored in a circular buffer
in SGA. Any session that is connected to the database and is waiting for an event that
does not belong to the Idle wait class is considered as an active session. This includes
any session that was on the CPU at the time of sampling.

Each session sample is a set of rows and the VSACTIVE_SESSION_HISTORY view returns
one row for each active session per sample, returning the latest session sample rows
first. Because the active session samples are stored in a circular buffer in SGA, the
greater the system activity, the smaller the number of seconds of session activity that
can be stored in the circular buffer. This means that the duration for which a session
sample appears in the V$ view, or the number of seconds of session activity that is
displayed in the V$ view, is completely dependent on the database activity.

As part of the AWR snapshots, the content of VSACTIVE_SESSION_HISTORY is also
flushed to disk. Because the content of this V$ view can get quite large during heavy
system activity, only a portion of the session samples is written to disk.

By capturing only active sessions, a manageable set of data is represented with the size
being directly related to the work being performed rather than the number of sessions
allowed on the system. Using ASH enables you to examine and perform detailed
analysis on both current data in the V$ACTIVE_SESSION_HISTORY view and historical
data in the DBA_HIST ACTIVE_SESS_HISTORY view, often avoiding the need to replay

Automatic Performance Statistics 5-3

Overview of Data Gathering

the workload to gather additional performance tracing information. ASH also contains
execution plan information for each captured SQL statement. You can use this
information to identify which part of SQL execution contributed most to the SQL
elapsed time. The data present in ASH can be rolled up on various dimensions that it
captures, including the following:

s SQL identifier of SQL statement

= SQL plan identifier and hash value of the SQL plan used to execute the SQL
statement

s SQL execution plan information

= Object number, file number, and block number
= Wait event identifier and parameters

= Session identifier and session serial number

s Module and action name

» Client identifier of the session

= Service hash identifier

= Consumer group identifier

You can gather ASH information over a specified duration into a report. For more
information, see "Generating Active Session History Reports" on page 5-34.

Active session history sampling is also available for Active Data Guard physical
standby instances and Oracle Automatic Storage Management (Oracle ASM) instances.
On these instances, the current session activity is collected and displayed in the
VSACTIVE_SESSION_HISTORY view, but not written to disk.

See Also:

» Oracle Database Reference for more information about the
VSACTIVE_SESSION_HISTORY view

» Oracle Database High Availability Overview for more information
about using ASH in an Active Data Guard physical standby
environment

System and Session Statistics

A large number of cumulative database statistics are available on a system and session
level through the VSSYSSTAT and V$SESSTAT views.

See Also: Oracle Database Reference to learn about the V$SYSSTAT
and V$SESSTAT views

Operating System Statistics

Operating system statistics provide information on the usage and performance of the
main hardware components of the system, and the performance of the operating
system itself. This information is crucial for detecting potential resource exhaustion,
such as CPU cycles and physical memory, and for detecting bad performance of
peripherals, such as disk drives.

Operating system statistics are an indication of how the hardware and operating
system are working. Many system analysts react to a hardware resource shortage by
installing more hardware. This is a reactionary response to a series of symptoms
shown in the operating system statistics. It is best to consider operating system

5-4 Oracle Database Performance Tuning Guide

Overview of Data Gathering

statistics as a diagnostic tool, similar to the way doctors use body temperature, pulse
rate, and patient pain when making a diagnosis. To help identify bottlenecks, gather
operating system statistics for all servers in the system under performance analysis.

Operating system statistics include the following:
s CPU Statistics

= Virtual Memory Statistics

s Disk I/O Statistics

= Network Statistics

See Also: "Operating System Data Gathering Tools" on page 5-6 for
information about tools for gathering operating statistics

CPU Statistics

CPU utilization is the most important operating system statistic in the tuning process.
Get CPU utilization for the entire system and for each individual CPU on
multi-processor environments. Utilization for each CPU can detect single-threading
and scalability issues.

Most operating systems report CPU usage as time spent in user space or mode and
time spent in kernel space or mode. These additional statistics allow better analysis of
what is actually being executed on the CPU.

On a system running Oracle Database, where only one application is typically
running, the system runs database activity in user space. Activities required to service
database requests (such as scheduling, synchronization, I/O, memory management,
and process/thread creation and tear down) run in kernel mode. In a system where
CPU is fully utilized, a healthy Oracle database runs between 65% and 95% in user
space.

The V$OSSTAT view captures machine-level information in the database, making it
easier for you to determine if hardware-level resource issues exist. The V$SYSMETRIC_
HISTORY view shows a one-hour history of the Host CPU Utilization metric, a
representation of percentage of CPU usage at each one-minute interval. The V$SYS_
TIME_MODEL view supplies statistics on the CPU usage by the Oracle database. Using
both sets of statistics enable you to determine whether the Oracle database or other
system activity is the cause of the CPU problems.

Virtual Memory Statistics

Virtual memory statistics should mainly be used as a check to validate that there is
very little paging or swapping activity on the system. System performance degrades
rapidly and unpredictably when paging or swapping occurs.

Individual process memory statistics can detect memory leaks due to a programming
failure to deallocate memory taken from the process heap. These statistics are
necessary to validate that memory usage does not increase after the system has
reached a steady state after startup. This problem is particularly acute on shared server
applications on middle tier computers where session state may persist across user
interactions, and on completion state information that is not fully deallocated.

Disk I/O Statistics

Because the database resides on a set of disks, the performance of the I/O subsystem is
very important to the performance of the database. Most operating systems provide
extensive statistics on disk performance. The most important disk statistics are the

Automatic Performance Statistics 5-5

Overview of Data Gathering

current response time and the length of the disk queues. These statistics show if the
disk is performing optimally or if the disk is being overworked.

Measure the normal performance of the I/O system; typical values for a single block
read range from 5 to 20 milliseconds, depending on the hardware used. If the
hardware shows response times much higher than the normal performance value, then
it is performing badly or is overworked. This is your bottleneck. If disk queues start to
exceed two, then the disk is a potential bottleneck of the system.

Oracle Database also maintains a consistent set of I/O statistics for the I/O calls it
issues. These statistics are captured for both single and multi block read and write
operations in the following dimensions:

= Consumer group

When Oracle Database Resource Manager is enabled, the VSIOSTAT CONSUMER_
GROUP view captures I/O statistics for all consumer groups that are part of the
currently enabled resource plan. The database samples cumulative statistics every
hour and stores them as historical statistics in the AWR.

s Database file

I/0 statistics of database files that are or have been accessed are captured in the
VSIOSTAT_FILE view.

s Database function

I/0 statistics for database functions (such as the LGWR and DBWR) are captured
in the VSIOSTAT_ FUNCTION view.

See Also: "Identifying I/O Problems Using V$ Views" on page 10-4
to learn how to use views in Oracle Database to identify I/O problems

Network Statistics

You can use network statistics in much the same way as disk statistics to determine if a
network or network interface is overloaded or not performing optimally. In today's
networked applications, network latency can be a large portion of the actual user
response time. For this reason, these statistics are a crucial debugging tool.

Oracle Database maintains a set of network I/O statistics in the VSIOSTAT NETWORK

view.

See Also: "lIdentifying Network Issues" on page 10-6 to learn how to
use the VSIOSTAT_NETWORK view to identify network issues

Operating System Data Gathering Tools

Table 5-1 shows the various tools for gathering operating statistics on UNIX. For
Windows, use the Performance Monitor tool.

Table 5-1 UNIX Tools for Operating Statistics

Component UNIX Tool

CPU sar, vistat, mpstat, iostat
Memory sar, vistat

Disk sar, iostat

Network netstat

5-6 Oracle Database Performance Tuning Guide

Overview of Data Gathering

Interpreting Statistics

When initially examining performance data, you can formulate potential theories by
examining your statistics. One way to ensure that your interpretation of the statistics is
correct is to perform cross-checks with other data. This establishes whether a statistic
or event is really of interest. Also, because foreground activities are tunable, it is better
to first analyze the statistics from foreground activities before analyzing the statistics
from background activities.

Some pitfalls are discussed in the following sections:
= Hitratios

When tuning, it is common to compute a ratio that helps determine whether there
is a problem. Such ratios include the buffer cache hit ratio, the soft-parse ratio, and
the latch hit ratio. Do not use these ratios as definitive identifiers of whether a
performance bottleneck exists. Rather, use them as indicators. To identify whether
a bottleneck exists, examine other related evidence. See "Calculating the Buffer
Cache Hit Ratio" on page 7-9.

s Wait events with timed statistics

Setting TIMED_STATISTICS to true at the instance level directs the database to
gather wait time for events, in addition to available wait counts. This data is useful
for comparing the total wait time for an event to the total elapsed time between
the data collections. For example, if the wait event accounts for only 30 seconds
out of a 2-hour period, then little is to be gained by investigating this event,
although it may be the highest ranked wait event when ordered by time waited.
However, if the event accounts for 30 minutes of a 45-minute period, then the
event is worth investigating. See "Wait Events" on page 5-2.

Note: Timed statistics are automatically collected for the database
if the initialization parameter STATISTICS_LEVEL is set to TYPICAL
or ALL. If STATISTICS_LEVEL is set to BASIC, then you must set
TIMED_STATISTICS to TRUE to enable collection of timed statistics.
Note that setting STATISTICS_LEVEL to BASIC disables many
automatic features and is not recommended.

If you eXpliCiﬂy set DB_CACHE_ADVICE, TIMED_STATISTICS, or TIMED_
0S_STATISTICS, either in the initialization parameter file or by
using ALTER_SYSTEM or ALTER SESSION, then the explicitly set value
overrides the value derived from STATISTICS_LEVEL.

» Comparing Oracle Database statistics with other factors

When looking at statistics, it is important to consider other factors that influence
whether the statistic is of value. Such factors include the user load and the
hardware capability. Even an event that had a wait of 30 minutes in a 45-minute
period might not be indicative of a problem if you discover that there were 2000
users on the system, and the host hardware was a 64-node computer.

= Wait events without timed statistics

If TIMED_STATISTICS is false, then the amount of time waited for an event is not
available. Therefore, it is only possible to order wait events by the number of times
each event was waited for. Although the events with the largest number of waits
might indicate the potential bottleneck, they might not be the main bottleneck.
This can happen when an event is waited for a large number of times, but the total
time waited for that event is small. The converse is also true: an event with fewer

Automatic Performance Statistics 5-7

Overview of the Automatic Workload Repository

waits might be a problem if the wait time is a significant proportion of the total
wait time. Without having the wait times to use for comparison, it is difficult to
determine whether a wait event is really of interest.

s Idle wait events

Oracle Database uses some wait events to indicate if the Oracle server process is
idle. Typically, these events are of no value when investigating performance
problems, and they should be ignored when examining the wait events. See "Idle
Wait Events" on page 10-30.

s Computed statistics

When interpreting computed statistics (such as rates, statistics normalized over
transactions, or ratios), it is important to cross-verify the computed statistic with
the actual statistic counts. This confirms whether the derived rates are really of
interest: small statistic counts usually can discount an unusual ratio. For example,
on initial examination, a soft-parse ratio of 50% generally indicates a potential
tuning area. If, however, there was only one hard parse and one soft parse during
the data collection interval, then the soft-parse ratio would be 50%, even though
the statistic counts show this is not an area of concern. In this case, the ratio is not
of interest due to the low raw statistic counts.

See Also:

» "Setting the Level of Statistics Collection" on page 10-7 to learn
about the STATISTICS_LEVEL settings

» Oracle Database Reference for information about the STATISTICS_
LEVEL initialization parameter

Overview of the Automatic Workload Repository

The Automatic Workload Repository (AWR) collects, processes, and maintains
performance statistics for problem detection and self-tuning purposes. This data is
both in memory and stored in the database. The gathered data can be displayed in
both reports and views.

The statistics collected and processed by AWR include:

» Object statistics that determine both access and usage statistics of database
segments

= Time model statistics based on time usage for activities, displayed in the V$SYS_
TIME_MODEL and V$SESS_TIME_MODEL views

= Some of the system and session statistics collected in the V$SYSSTAT and V$SESSTAT
views

= SQL statements that are producing the highest load on the system, based on
criteria such as elapsed time and CPU time

= ASH statistics, representing the history of recent sessions activity

Gathering database statistics using the AWR is enabled by default and is controlled by
the STATISTICS_LEVEL initialization parameter. The STATISTICS_LEVEL parameter
should be set to the TYPICAL or ALL to enable statistics gathering by the AWR. The
default setting is TYPICAL. Setting STATISTICS_LEVEL to BASIC disables many Oracle
Database features, including the AWR, and is not recommended. If STATISTICS_LEVEL
is set to BASIC, you can still manually capture AWR statistics using the DBMS_
WORKLOAD_REPOSITORY package. However, because in-memory collection of many
system statistics—such as segments statistics and memory advisor information—will

5-8 Oracle Database Performance Tuning Guide

Overview of the Automatic Workload Repository

Snapshots

Baselines

be disabled, the statistics captured in these snapshots may not be complete. For
information about the STATISTICS_LEVEL initialization parameter, see Oracle Database
Reference.

Snapshots are sets of historical data for specific time periods that are used for
performance comparisons by ADDM. By default, Oracle Database automatically
generates snapshots of the performance data once every hour and retains the statistics
in the workload repository for 8 days. You can also manually create snapshots, but this
is usually not necessary. The data in the snapshot interval is then analyzed by the
Automatic Database Diagnostic Monitor (ADDM). For information about ADDM, see
"Overview of the Automatic Database Diagnostic Monitor" on page 6-1.

AWR compares the difference between snapshots to determine which SQL statements
to capture based on the effect on the system load. This reduces the number of SQL
statements that must be captured over time.

For information about managing snapshots, see "Managing Snapshots" on page 5-13.

A baseline contains performance data from a specific time period that is preserved for
comparison with other similar workload periods when performance problems occur.
The snapshots contained in a baseline are excluded from the automatic AWR purging
process and are retained indefinitely.

There are several types of available baselines in Oracle Database:
= Fixed Baselines
= Moving Window Baseline

= Baseline Templates

Fixed Baselines

A fixed baseline corresponds to a fixed, contiguous time period in the past that you
specify. Before creating a fixed baseline, carefully consider the time period you choose
as a baseline, because the baseline should represent the system operating at an optimal
level. In the future, you can compare the baseline with other baselines or snapshots
captured during periods of poor performance to analyze performance degradation
over time.

See Also: "Managing Baselines" on page 5-14 for information about
managing fixed baselines

Moving Window Baseline

A moving window baseline corresponds to all AWR data that exists within the AWR
retention period. This is useful when using adaptive thresholds because the database
can use AWR data in the entire AWR retention period to compute metric threshold
values.

Oracle Database automatically maintains a system-defined moving window baseline.
The default window size for the system-defined moving window baseline is the
current AWR retention period, which by default is 8 days. If you are planning to use
adaptive thresholds, consider using a larger moving window—such as 30 days—to
accurately compute threshold values. You can resize the moving window baseline by
changing the number of days in the moving window to a value that is equal to or less

Automatic Performance Statistics 5-9

Overview of the Automatic Workload Repository

than the number of days in the AWR retention period. Therefore, to increase the size of
a moving window, you must first increase the AWR retention period accordingly.

See Also: "Modifying the Window Size of the Default Moving
Window Baseline" on page 5-17 for information about resizing the
moving window baseline

Baseline Templates

You can also create baselines for a contiguous time period in the future using baseline
templates. There are two types of baseline templates: single and repeating.

You can use a single baseline template to create a baseline for a single contiguous time
period in the future. This technique is useful if you know beforehand of a time period
that you intend to capture in the future. For example, you may want to capture the
AWR data during a system test that is scheduled for the upcoming weekend. In this
case, you can create a single baseline template to automatically capture the time period
when the test occurs.

You can use a repeating baseline template to create and drop baselines based on a
repeating time schedule. This is useful if you want Oracle Database to automatically
capture a contiguous time period on an ongoing basis. For example, you may want to
capture the AWR data during every Monday morning for a month. In this case, you
can create a repeating baseline template to automatically create baselines on a
repeating schedule for every Monday, and automatically remove older baselines after
a specified expiration interval, such as one month.

See Also: "Managing Baseline Templates" on page 5-17 for
information about managing baseline templates

Adaptive Thresholds

Adaptive thresholds enable you to monitor and detect performance issues while
minimizing administrative overhead. Adaptive thresholds can automatically set
warning and critical alert thresholds for some system metrics using statistics derived
from metric values captured in the moving window baseline. The statistics for these
thresholds are recomputed weekly and might result in new thresholds as system
performance evolves over time. In addition to recalculating thresholds weekly,
adaptive thresholds might compute different thresholds values for different times of
the day or week based on periodic workload patterns.

For example, many databases support an online transaction processing (OLTP)
workload during the day and batch processing at night. The performance metric for
response time per transaction can be useful for detecting degradation in OLTP
performance during the day. However, a useful OLTP threshold value is almost
certainly too low for batch workloads, where long-running transactions might be
common. As a result, threshold values appropriate to OLTP might trigger frequent
false performance alerts during batch processing. Adaptive thresholds can detect such
a workload pattern and automatically set different threshold values for the daytime
and nighttime.

Note: In Oracle Database 11¢ Release 2 (11.2), Oracle Database
automatically determines the appropriate time groupings for a
database. However, before Oracle Database 11g Release 2 (11.2), time
groupings were specified manually by the database administrator.

There are two types of adaptive thresholds:

5-10 Oracle Database Performance Tuning Guide

Overview of the Automatic Workload Repository

s Percentage of maximum: The threshold value is computed as a percentage
multiple of the maximum value observed for the data in the moving window
baseline.

= Significance level: The threshold value is set to a statistical percentile that
represents how unusual it is to observe values above the threshold value based the
data in the moving window baseline. Specify one of the following percentiles:

- High (.95): Only 5 in 100 observations are expected to exceed this value.
- Very High (.99): Only 1 in 100 observations are expected to exceed this value.
— Severe (.999): Only 1 in 1,000 observations are expected to exceed this value.

- Extreme (.9999): Only 1 in 10,000 observations are expected to exceed this
value.

Note: When you specify Severe (.999) or Extreme (.9999), Oracle
Database performs an internal calculation to set the threshold value.
In some cases, Oracle Database cannot establish the threshold value at
these levels using the data in the baseline, and the significance level
threshold is not set.

If you are not receiving alerts as expected, and you specified a Severe
(:999) or Extreme (.9999) significance level threshold, then you can try
setting the significance level threshold to a lower value, such as Very
High (.99) or High (.95). Alternatively, you can set a percentage of
maximum threshold instead of a significance level threshold. If you
change the threshold and find that you are receiving too many alerts,
then you can try increasing the number of occurrences to cause an
alert.

Percentage of maximum thresholds are most useful when a system is sized for peak
workloads, and you want to be alerted when the current workload volume is
approaching or exceeding previous high values. Metrics that have an unknown but
definite limiting value are good candidates for these settings. For example, the redo
generated per second metric is typically a good candidate for a percentage of
maximum threshold.

Significance level thresholds are most useful for metrics that should exhibit statistically
stable behavior when the system is operating normally, but might vary over a wide
range when the system is performing poorly. For example, the response time per
transaction metric should be stable for a well-tuned OLTP system, but may fluctuate
widely when performance issues arise. Significance level thresholds are meant to
generate alerts when conditions produce both unusual metric values and unusual
system performance.

Note: The primary interface for managing baseline metrics is Oracle
Enterprise Manager. To create an adaptive threshold for a baseline
metric, use Oracle Enterprise Manager, as described in Oracle Database
2 Day + Performance Tuning Guide.

See Also: "Moving Window Baseline" on page 5-9

Automatic Performance Statistics 5-11

Managing the Automatic Workload Repository

Space Consumption

The space consumed by the AWR is determined by several factors:
= Number of active sessions in the system at any given time
= Snapshot interval

The snapshot interval determines the frequency at which snapshots are captured.
A smaller snapshot interval increases the frequency, which increases the volume of
data collected by the AWR.

» Historical data retention period

The retention period determines how long this data is retained before being
purged. A longer retention period increases the space consumed by the AWR.

By default, snapshots are captured once every hour and are retained in the database
for 8 days. With these default settings, a typical system with an average of 10
concurrent active sessions can require approximately 200 to 300 MB of space for its
AWR data. It is possible to change the default values for both snapshot interval and
retention period. See "Modifying Snapshot Settings" on page 5-14 to learn how to
modify AWR settings.

The AWR space consumption can be reduced by the increasing the snapshot interval
and reducing the retention period. When reducing the retention period, note that
several Oracle Database self-managing features depend on AWR data for proper
functioning. Not having enough data can affect the validity and accuracy of these
components and features, including:

= Automatic Database Diagnostic Monitor
= SQL Tuning Advisor

= Undo Advisor

= Segment Advisor

If possible, Oracle recommends that you set the AWR retention period large enough to
capture at least one complete workload cycle. If your system experiences weekly
workload cycles, such as OLTP workload during weekdays and batch jobs during the
weekend, you do not need to change the default AWR retention period of 8 days.
However if your system is subjected to a monthly peak load during month end book
closing, you may have to set the retention period to one month.

Under exceptional circumstances, you can turn off automatic snapshot collection by
setting the snapshot interval to 0. Under this condition, the automatic collection of the
workload and statistical data is stopped and much of the Oracle Database
self-management functionality is not operational. In addition, you cannot manually
create snapshots. For this reason, Oracle strongly recommends that you do not turn off
automatic snapshot collection.

Managing the Automatic Workload Repository
This section describes how to manage the AWR and contains the following topics:
» Managing Snapshots
= Managing Baselines
» Managing Baseline Templates

» Transporting Automatic Workload Repository Data

5-12 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

s Using Automatic Workload Repository Views

= Generating Automatic Workload Repository Reports

s Generating Automatic Workload Repository Compare Periods Reports
= Generating Active Session History Reports

s Using Active Session History Reports

See Also: "Overview of the Automatic Workload Repository" on
page 5-8 for a description of the AWR

Managing Snapshots

By default, Oracle Database generates snapshots once every hour, and retains the
statistics in the workload repository for 8 days. When necessary, you can use DBMS_
WORKLOAD_REPOSITORY procedures to manually create, drop, and modify the snapshots.
To invoke these procedures, a user must be granted the DBA role.

The primary interface for managing snapshots is Oracle Enterprise Manager.
Whenever possible, you should manage snapshots using Oracle Enterprise Manager,
as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle Enterprise
Manager is unavailable, you can manage snapshots using the DBMS_WORKLOAD_
REPOSITORY package, as described in the following sections:

» Creating Snapshots
= Dropping Snapshots
= Modifying Snapshot Settings

See Also:
= "Snapshots" on page 5-9 for more information about snapshots

» Oracle Database PL/SQL Packages and Types Reference for detailed
information on the DBMS_WORKLOAD_REPOSITORY package

Creating Snapshots

You can manually create snapshots with the CREATE_SNAPSHOT procedure to capture
statistics at times different than those of the automatically generated snapshots. For
example:

BEGIN
DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT () ;

END;

/

In this example, a snapshot for the instance is created immediately with the flush level
specified to the default flush level of TYPICAL. You can view this snapshot in the DBA_
HIST_SNAPSHOT view.

Dropping Snapshots

You can drop a range of snapshots using the DROP_SNAPSHOT_RANGE procedure. To view
a list of the snapshot IDs along with database IDs, check the DBA_HIST SNAPSHOT view.
For example, you can drop the following range of snapshots:

BEGIN
DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE (low_snap_id => 22,
high_snap_id => 32, dbid => 3310949047);

Automatic Performance Statistics 5-13

Managing the Automatic Workload Repository

END;
/

In the example, the range of snapshot IDs to drop is specified from 22 to 32. The
optional database identifier is 3310949047. If you do not specify a value for dbid, the
local database identifier is used as the default value.

Active Session History data (ASH) that belongs to the time period specified by the
snapshot range is also purged when the DROP_SNAPSHOT_RANGE procedure is called.

Modifying Snapshot Settings

You can adjust the interval, retention, and captured Top SQL of snapshot generation
for a specified database ID, but note that this can affect the precision of the Oracle
Database diagnostic tools.

The INTERVAL setting affects how often the database automatically generates
snapshots. The RETENTION setting affects how long the database stores snapshots in the
workload repository. The TOPNSQL setting affects the number of Top SQL to flush for
each SQL criteria (Elapsed Time, CPU Time, Parse Calls, sharable Memory, and
Version Count). The value for this setting is not affected by the statistics/flush level
and will override the system default behavior for the AWR SQL collection. It is
possible to set the value for this setting to MAXIMUM to capture the complete set of SQL
in the shared SQL area, though by doing so (or by setting the value to a very high
number) may lead to possible space and performance issues because there will more
data to collect and store. To adjust the settings, use the MODIFY_SNAPSHOT_SETTINGS
procedure. For example:

BEGIN
DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT SETTINGS(retention => 43200,
interval => 30, topnsqgl => 100, dbid => 3310949047);
END;
/

In this example, the retention period is specified as 43200 minutes (30 days), the
interval between each snapshot is specified as 30 minutes, and the number of Top SQL
to flush for each SQL criteria as 100. If NULL is specified, the existing value is
preserved. The optional database identifier is 3310949047. If you do not specify a value
for dbid, the local database identifier is used as the default value. You can check the
current settings for your database instance with the DBA_HIST_WR_CONTROL view.

Managing Baselines

This section describes how to manage baselines. The primary interface for managing
baselines is Oracle Enterprise Manager. Whenever possible, you should manage
baselines using Oracle Enterprise Manager, as described in Oracle Database 2 Day +
Performance Tuning Guide. If Oracle Enterprise Manager is unavailable, you can
manage baselines using the DBMS_WORKLOAD_REPOSITORY package, as described in the
following sections:

» Creating a Baseline

= Dropping a Baseline

= Renaming a Baseline

= Displaying Baseline Metrics

= Modifying the Window Size of the Default Moving Window Baseline

5-14 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

See Also:
= "Baselines" on page 5-9 for more information about baselines

» Oracle Database PL/SQL Packages and Types Reference for detailed
information on the DBMS_WORKLOAD_REPOSITORY package

Creating a Baseline
This section describes how to create a baseline using an existing range of snapshots.

To create a baseline:

1. Review the existing snapshots in the DBA_HIST_SNAPSHOT view to determine the
range of snapshots to use.

2. Use the CREATE_BASELINE procedure to create a baseline using the desired range of
snapshots:

BEGIN
DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE (start_snap_id => 270,
end_snap_id => 280, baseline_name => 'peak baseline',
dbid => 3310949047, expiration => 30);
END;
/

In this example, 270 is the start snapshot sequence number and 280 is the end
snapshot sequence. The name of baseline is peak baseline. The optional database
identifier is 3310949047. If you do not specify a value for dbid, then the local
database identifier is used as the default value. The optional expiration
parameter is set to 30, so the baseline will expire and be dropped automatically
after 30 days. If you do not specify a value for expiration, the baseline will never
expire.

The system automatically assign a unique baseline ID to the new baseline when the
baseline is created. The baseline ID and database identifier are displayed in the DBA_
HIST_BASELINE view.

Dropping a Baseline

This section describes how to drop an existing baseline. Periodically, you may want to
drop a baseline that is no longer used to conserve disk space. The snapshots associated
with a baseline are retained indefinitely until you explicitly drop the baseline or the
baseline has expired.

To drop a baseline:

1. Review the existing baselines in the DBA_HIST_BASELINE view to determine the
baseline to drop.

2. Use the DROP_BASELINE procedure to drop the desired baseline:

BEGIN
DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE (baseline_name => 'peak baseline',
cascade => FALSE, dbid => 3310949047);
END;
/

In the example, the name of baseline is peak baseline. The cascade parameter is
set to FALSE, which specifies that only the baseline is dropped. Setting this
parameter to TRUE specifies that the drop operation will also remove the snapshots
associated with the baseline. The optional dbid parameter specifies the database

Automatic Performance Statistics 5-15

Managing the Automatic Workload Repository

identifier, which in this example is 3310949047. If you do not specify a value for
dbid, then the local database identifier is used as the default value.

Renaming a Baseline
This section describes how to rename a baseline.

To rename a baseline:

1.

Review the existing baselines in the DBA_HIST BASELINE view to determine the
baseline to rename.

Use the RENAME_BASELINE procedure to rename the desired baseline:

BEGIN
DBMS_WORKLOAD_REPOSITORY.RENAME_BASELINE (
0ld_baseline_name => 'peak baseline',
new_baseline_name => 'peak mondays',
dbid => 3310949047);
END;
/

In this example, the name of the baseline is renamed from peak baseline, as
specified by the 01d_baseline_name parameter, to peak mondays, as specified by
the new_baseline_name parameter. The optional dbid parameter specifies the
database identifier, which in this example is 3310949047. If you do not specify a
value for dbid, then the local DBID is the default value.

Displaying Baseline Metrics

This section describes how to display metric threshold settings during the time period
captured in a baseline. When used with adaptive thresholds, a baseline contains AWR
data that the database can use to compute metric threshold values. The SELECT_
BASELINE_METRICS function enables you to display the summary statistics for metric
values in a baseline period.

To display metric information in a baseline:

1.

Review the existing baselines in the DBA_HIST BASELINE view to determine the
baseline for which you want to display metric information.

Use the SELECT_BASELINE_METRICS function to display the metric information for
the desired baseline:

BEGIN
DBMS_WORKLOAD_REPOSITORY.SELECT_BASELINE_METRICS (
baseline_name => 'peak baseline',
dbid => 3310949047,
instance_num => '1');
END;
/

In this example, the name of baseline is peak baseline. The optional dbid
parameter specifies the database identifier, which in this example is 3310949047. If
you do not specify a value for dbid, then the local database identifier is used as the
default value. The optional instance_num parameter specifies the instance
number, which in this example is 1. If you do not specify a value for instance_
num, then the local instance is used as the default value.

5-16 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

Modifying the Window Size of the Default Moving Window Baseline

This section describes how to modify the window size of the default moving window
baseline. For information about the default moving window baseline, see "Moving
Window Baseline" on page 5-9.

To resize the default moving window baseline, use the MODIFY_BASELINE_WINDOW_SIZE
procedure:

BEGIN
DBMS_WORKLOAD_REPOSITORY.MODIFY_ BASELINE_WINDOW_SIZE (
window_size => 30,
dbid => 3310949047);
END;
/

The window_size parameter is used to specify the new window size, in number of
days, for the default moving window size. In this example, the window_size parameter
is set to 30. The window size must be set to a value that is equal to or less than the
value of the AWR retention setting. To set a window size that is greater than the
current AWR retention period, you must first increase the value of the retention
parameter, as described in "Modifying Snapshot Settings" on page 5-14.

In this example, the optional dbid parameter specifies the database identifier is
3310949047. If you do not specify a value for dbid, then the local database identifier is
used as the default value.

Managing Baseline Templates

This section describes how to manage baseline templates. You can automatically create
baselines to capture specified time periods in the future using baseline templates. For
information about baseline templates, see "Baseline Templates" on page 5-10.

The primary interface for managing baseline templates is Oracle Enterprise Manager.
Whenever possible, you should manage baseline templates using Oracle Enterprise
Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle
Enterprise Manager is unavailable, you can manage baseline templates using the
DBMS_WORKLOAD_REPOSITORY package, as described in the following sections:

s Creating a Single Baseline Template
s Creating a Repeating Baseline Template
= Dropping a Baseline Template

See Also: Oracle Database PL/SQL Packages and Types Reference for
detailed information on the DBMS_WORKLOAD_REPOSITORY package

Creating a Single Baseline Template

This section describes how to create a single baseline template. You can use a single
baseline template to create a baseline during a single, fixed time interval in the future.
For example, you can create a single baseline template to generate a baseline that is
captured on April 2, 2009 from 5:00 p.m. to 8:00 p.m.

To create a single baseline template, use the CREATE_BASELINE_TEMPLATE procedure:

BEGIN
DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE (
start_time => '2009-04-02 17:00:00 PST',
end_time => '2009-04-02 20:00:00 PST',
baseline_name => 'baseline_090402',

Automatic Performance Statistics 5-17

Managing the Automatic Workload Repository

template_name => 'template_090402', expiration => 30,
dbid => 3310949047);

END;

/

The start_time parameter specifies the start time for the baseline to be created. The
end_time parameter specifies the end time for the baseline to be created. The
baseline_name parameter specifies the name of the baseline to be created. The
template_name parameter specifies the name of the baseline template. The optional
expiration parameter specifies the expiration, in number of days, for the baseline. If
unspecified, then the baseline never expires. The optional dbid parameter specifies the
database identifier. If unspecified, then the local database identifier is used as the
default value.

In this example, a baseline template named template_090402 is created that will
generate a baseline named baseline 090402 for the time period from 5:00 p.m. to 8:00
p-m. on April 2, 2009 on the database with a database ID of 3310949047. The baseline
will expire after 30 days.

Creating a Repeating Baseline Template

This section describes how to create a repeating baseline template. A repeating
baseline template can be used to automatically create baselines that repeat during a
particular time interval over a specific period in the future. For example, you can
create a repeating baseline template to generate a baseline that repeats every Monday
from 5:00 p.m. to 8:00 p.m. for the year 2009.

To create a repeating baseline template, use the CREATE_BASELINE TEMPLATE procedure:

BEGIN
DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE (

day_of_week => 'monday', hour_in_day => 17,
duration => 3, expiration => 30,
start_time => '2009-04-02 17:00:00 PST',
end_time => '2009-12-31 20:00:00 PST',
baseline_name_prefix => 'baseline_2009_mondays_',
template_name => 'template_2009_mondays',
dbid => 3310949047);

END;

/

The day_of_week parameter specifies the day of the week on which the baseline will
repeat. The hour_in_day parameter specifies the hour in the day when the baseline
will start. The duration parameter specifies the duration, in number of hours, that the
baseline will last. The expiration parameter specifies the number of days to retain
each created baseline. If set to NULL, then the baselines never expires. The start_time
parameter specifies the start time for the baseline to be created. The end_time
parameter specifies the end time for the baseline to be created. The baseline name_
prefix parameter specifies the name of the baseline prefix that will be appended to the
data information when the baseline is created. The template_name parameter specifies
the name of the baseline template. The optional dbid parameter specifies the database
identifier. If unspecified, then the local database identifier is used as the default value.

In this example, a baseline template named template_2009_mondays is created that
will generate a baseline on every Monday from 5:00 p.m. to 8:00 p.m. beginning on
April 2, 2009 at 5:00 p.m. and ending on December 31, 2009 at 8:00 p.m. on the
database with a database ID of 3310949047. Each of the baselines will be created with a
baseline name with the prefix baseline_2009_mondays_ and will expire after 30 days.

5-18 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

Dropping a Baseline Template

This section describes how to drop an existing baseline template. Periodically, you
may want to remove baselines templates that are no longer used to conserve disk
space.

To drop a baseline template:

1. Review the existing baselines in the DBA_HIST_BASELINE_TEMPLATE view to
determine the baseline template you want to drop.

2. Use the DROP_BASELINE_TEMPLATE procedure to drop the desired baseline template:

BEGIN
DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE_TEMPLATE (
template_name => 'template_2009_mondays',
dbid => 3310949047);
END;
/

The template_name parameter specifies the name of the baseline template that will
be dropped. In the example, the name of baseline template that will be dropped is
template_2009_mondays. The optional dbid parameter specifies the database
identifier, which in this example is 3310949047. If you do not specify a value for
dbid, then the local database identifier is used as the default value.

Transporting Automatic Workload Repository Data

Oracle Database enables you to transport AWR data between systems. This is useful in
cases where you want to use a separate system to perform analysis of the AWR data.
To transport AWR data, you must first extract the AWR snapshot data from the
database on the source system, then load the data into the database on the target
system, as described in the following sections:

» Extracting AWR Data
= Loading AWR Data

Extracting AWR Data

The awrextr.sql script extracts the AWR data for a range of snapshots from the
database into a Data Pump export file. After it is created, you can transport this dump
file to another database where you can load the extracted data. To run the awrextr.sql
script, you must be connected to the database as the SYS user.

To extract AWR data:
1. At the SQL prompt, enter:

@SORACLE_HOME/rdbms/admin/awrextr.sql

A list of the databases in the AWR schema is displayed.
2. Specify the database from which the AWR data will be extracted:

Enter value for db_id: 1377863381

In this example, the database with the database identifier of 1377863381 is
selected.

3. Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 2

Automatic Performance Statistics 5-19

Managing the Automatic Workload Repository

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

4. Define the range of snapshots for which AWR data will be extracted by specifying
a beginning and ending snapshot ID:

Enter value for begin_snap: 30

Enter value for end_snap: 40

In this example, the snapshot with a snapshot ID of 30 is selected as the beginning
snapshot, and the snapshot with a snapshot ID of 40 is selected as the ending
snapshot.

5. A list of directory objects is displayed.

Specify the directory object pointing to the directory where the export dump file
will be stored:

Enter value for directory_name: DATA_PUMP_DIR

In this example, the directory object DATA_PUMP_DIR is selected.

6. Specify the prefix for name of the export dump file (the . dmp suffix will be
automatically appended):

Enter value for file_name: awrdata_30_40
In this example, an export dump file named awrdata_30_40 will be created in the
directory corresponding to the directory object you specified:

Dump file set for SYS.SYS_EXPORT_TABLE_ 01 is:
C:\ORACLE\PRODUCT\11.1.0.5\DB_1\RDBMS\LOG\AWRDATA_30_40.DMP
Job "SYS"."SYS_EXPORT TABLE_01" successfully completed at 08:58:20

Depending on the amount of AWR data that must be extracted, the AWR extract
operation may take a while to complete. After the dump file is created, you can
use Data Pump to transport the file to another system.

See Also: Oracle Database Utilities for information about using Data
Pump

Loading AWR Data

After the export dump file is transported to the target system, you can load the
extracted AWR data using the awrload. sql script. The awrload.sql script will first
create a staging schema where the snapshot data is transferred from the Data Pump
file into the database. The data is then transferred from the staging schema into the
appropriate AWR tables. To run the awrload. sql script, you must be connected to the
database as the SYS user.

To load AWR data:
1. At the SQL prompt, enter:

@SORACLE_HOME/rdbms/admin/awrload.sql

A list of directory objects is displayed.

2. Specify the directory object pointing to the directory where the export dump file is
located:

Enter value for directory_name: DATA_PUMP_DIR

In this example, the directory object DATA_PUMP_DIR is selected.

5-20 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

Specify the prefix for name of the export dump file (the . dmp suffix will be
automatically appended):

Enter value for file_name: awrdata_30_40

In this example, the export dump file named awrdata_30_40 is selected.
Specify the name of the staging schema where the AWR data will be loaded:
Enter value for schema_name: AWR_STAGE

In this example, a staging schema named AWR_STAGE will be created where the
AWR data will be loaded.

Specify the default tablespace for the staging schema:

Enter value for default_tablespace: SYSAUX

In this example, the SYSAUX tablespace is selected.
Specify the temporary tablespace for the staging schema:

Enter value for temporary_tablespace: TEMP

In this example, the TEMP tablespace is selected.

A staging schema named AWR_STAGE will be created where the AWR data will be
loaded. After the AWR data is loaded into the AWR_STAGE schema, the data will be
transferred into the AWR tables in the SYS schema:

Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Completed 113 CONSTRAINT objects in 11 seconds
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
Completed 1 REF_CONSTRAINT objects in 1 seconds
Job "SYS"."SYS_IMPORT_FULL_03" successfully completed at 09:29:30

. Dropping AWR_STAGE user
End of AWR Load

Depending on the amount of AWR data that must be loaded, the AWR load
operation may take a while to complete. After the AWR data is loaded, the staging
schema will be dropped automatically.

Using Automatic Workload Repository Views

Typically, you would view the AWR data through Oracle Enterprise Manager or AWR
reports. However, you can also view the statistics using the following views:

VSACTIVE_SESSION_HISTORY

This view displays active database session activity, sampled once every second.
See "Active Session History" on page 5-3.

V$ metric views provide metric data to track the performance of the system

The metric views are organized into various groups, such as event, event class,
system, session, service, file, and tablespace metrics. These groups are identified in
the VSMETRICGROUP view.

DBA_HIST views

The DBA_HIST views displays historical data stored in the database. This group of
views includes:

= DBA_HIST ACTIVE_SESS HISTORY displays the history of the contents of the
in-memory active session history for recent system activity

Automatic Performance Statistics 5-21

Managing the Automatic Workload Repository

= DBA_HIST_ BASELINE displays information about the baselines captured on the
system, such as the time range of each baseline and the baseline type

= DBA_HIST BASELINE_DETAILS displays details about a specific baseline

= DBA_HIST BASELINE_TEMPLATE displays information about the baseline
templates used by the system to generate baselines

= DBA_HIST_DATABASE_INSTANCE displays information about the database
environment

= DBA_HIST_DB_CACHE_ADVICE displays historical predictions of the number of
physical reads for the cache size corresponding to each row

= DBA_HIST_DISPATCHER displays historical information for each dispatcher
process at the time of the snapshot

= DBA_HIST_DYN_REMASTER_STATS displays statistical information about the
dynamic remastering process

= DBA_HIST_IOSTAT_DETAIL displays historical I/O statistics aggregated by file
type and function

= DBA_HIST_SHARED_SERVER_SUMMARY displays historical information for shared
servers, such as shared server activity, common queues and dispatcher queues

= DBA_HIST_SNAPSHOT displays information on snapshots in the system
= DBA_HIST_SQL_PLAN displays the SQL execution plans

= DBA_HIST_WR_CONTROL displays the settings for controlling AWR

See Also: Oracle Database Reference for information about dynamic
and static data dictionary views

Generating Automatic Workload Repository Reports

An AWR report shows data captured between two snapshots (or two points in time).
The AWR reports are divided into multiple sections. The HTML report includes links
that can be used to navigate quickly between sections. The content of the report
contains the workload profile of the system for the selected range of snapshots.

The primary interface for generating AWR reports is Oracle Enterprise Manager.
Whenever possible, you should generate AWR reports using Oracle Enterprise
Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle
Enterprise Manager is unavailable, you can generate AWR reports by running SQL
scripts, as described in the following sections:

Generating an AWR Report

Generating an Oracle RAC AWR Report

Generating an AWR Report on a Specific Database Instance

Generating an Oracle RAC AWR Report on Specific Database Instances
Generating an AWR Report for a SQL Statement

Generating an AWR Report for a SQL Statement on a Specific Database Instance

To run these scripts, you must be granted the DBA role.

5-22 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

Note: If you run a report on a database that does not have any
workload activity during the specified range of snapshots,
calculated percentages for some report statistics can be less than 0
or greater than 100. This result simply means that there is no
meaningful value for the statistic.

Generating an AWR Report

The awrrpt.sqgl SQL script generates an HTML or text report that displays statistics
for a range of snapshot IDs.

To generate an AWR report:
1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrrpt.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.
3. Specify the number of days for which you want to list snapshot IDs.
Enter value for num_days: 2
A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.
4. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

5. Enter a report name, or accept the default report name:
Enter value for report_name:

Using the report name awrrpt_1_150_160

In this example, the default name is accepted and an AWR report named awrrpt_
1_150_160 is generated.

Generating an Oracle RAC AWR Report

The awrgrpt.sql SQL script generates an HTML or text report that displays statistics
for a range of snapshot IDs using the current database identifier and all available
database instances in an Oracle Real Application Clusters (Oracle RAC) environment.

Note: In an Oracle RAC environment, you should always try to
generate an HTML report (instead of a text report) because they are
much easier to read.

To generate an AWR report in an Oracle RAC environment:

1. At the SQL prompt, enter:

Automatic Performance Statistics 5-23

Managing the Automatic Workload Repository

@$ORACLE_HOME/rdbms/admin/awrgrpt.sqgl

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.
3. Specify the number of days for which you want to list snapshot IDs.
Enter value for num_days: 2
A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last day are displayed.
4. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

5. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrrpt_rac_150_160.html

In this example, the default name is accepted and an AWR report named awrrpt_
rac_150_160.html is generated.

Generating an AWR Report on a Specific Database Instance

The awrrpti.sql SQL script generates an HTML or text report that displays statistics
for a range of snapshot IDs using a specific database and instance. This script enables
you to specify a database identifier and instance for which the AWR report will be
generated.

To generate an AWR report on a specific database instance:
1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrrpti.sqgl

2. Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.
A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema

DB Id Inst Num DB Name Instance Host
3309173529 1 MAIN main exampl690
3309173529 1 TINT251 tint251 samp251

3. Enter the values for the database identifier (dbid) and instance number (inst_
num):

Enter value for dbid: 3309173529
Using 3309173529 for database Id

5-24 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

Enter value for inst_num: 1

4. Specify the number of days for which you want to list snapshot IDs.

Enter value for num days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

5. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

6. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrrpt_1_150_160

In this example, the default name is accepted and an AWR report named awrrpt_
1_150_160 is generated on the database instance with a database ID value of
3309173529.

Generating an Oracle RAC AWR Report on Specific Database Instances

The awrgrpti.sql SQL script generates an HTML or text report that displays statistics
for a range of snapshot IDs using specific databases and instances running in an
Oracle RAC environment. This script enables you to specify database identifiers and a
comma-delimited list of database instances for which the AWR report will be
generated.

Note: In an Oracle RAC environment, you should always try to
generate an HTML report (instead of a text report) because they are
much easier to read.

To generate an AWR report on a specific database instance in an Oracle RAC
environment:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrgrpti.sqgl

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.
A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema

DB Id Inst Num DB Name Instance Host
3309173529 1 MAIN main exampl690
3309173529 1 TINT251 tint251 samp251
3309173529 2 TINT251 tint252 samp252

Automatic Performance Statistics 5-25

Managing the Automatic Workload Repository

3. Enter the value for the database identifier (dbid):

Enter value for dbid: 3309173529
Using 3309173529 for database Id

4. Enter the value for the instance numbers (instance_numbers_or_all) of the Oracle
RAC instances you want to include in the report:

Enter value for instance_numbers_or_all: 1,2

5. Specify the number of days for which you want to list snapshot IDs.
Enter value for num_days: 2
A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

6. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

7. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrrpt_rac_150_160.html

In this example, the default name is accepted and an AWR report named awrrpt_
rac_150_160.html is generated on the database instance with a database ID value
of 3309173529.

Generating an AWR Report for a SQL Statement

The awrsqrpt. sql SQL script generates an HTML or text report that displays statistics
of a particular SQL statement for a range of snapshot IDs. Run this report to inspect or
debug the performance of a SQL statement.

To generate an AWR report for a particular SQL statement:
1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrsqrpt.sqgl

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.
3. Specify the number of days for which you want to list snapshot IDs.

Enter value for num days: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

4. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 146
Enter value for end_snap: 147

5-26 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

In this example, the snapshot with a snapshot ID of 146 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 147 is selected as the
ending snapshot.

5. Specify the SQL ID of a particular SQL statement to display statistics:

Enter value for sqgl_id: 2b064ybzkwfly

In this example, the SQL statement with a SQL ID of 2b064ybzkwfly is selected.
6. Enter a report name, or accept the default report name:
Enter value for report_name:

Using the report name awrrpt_1_146_147.html

In this example, the default name is accepted and an AWR report named awrrpt_
1_146_147 is generated.

Generating an AWR Report for a SQL Statement on a Specific Database Instance

The awrsqrpi.sql SQL script generates an HTML or text report that displays statistics
of a particular SQL statement for a range of snapshot IDs using a specific database and
instance.This script enables you to specify a database identifier and instance for which
the AWR report will be generated. Run this report to inspect or debug the performance
of a SQL statement on a specific database and instance.

To generate an AWR report for a particular SQL statement on a specified database
instance:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrsqgrpi.sqgl

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.
A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema

DB Id Inst Num DB Name Instance Host
3309173529 1 MAIN main exampl690
3309173529 1 TINT251 tint251 samp251

3. Enter the values for the database identifier (dbid) and instance number (inst_
num):

Enter value for dbid: 3309173529
Using 3309173529 for database Id
Enter value for inst_num: 1
Using 1 for instance number

4. Specify the number of days for which you want to list snapshot IDs.

Enter value for num days: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

Automatic Performance Statistics 5-27

Managing the Automatic Workload Repository

5. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 146
Enter value for end_snap: 147

In this example, the snapshot with a snapshot ID of 146 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 147 is selected as the
ending snapshot.

6. Specify the SQL ID of a particular SQL statement to display statistics:

Enter value for sqgl_id: 2b064ybzkwfly

In this example, the SQL statement with a SQL ID of 2b064ybzkwfly is selected.
7. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrrpt_1_146_147.html

In this example, the default name is accepted and an AWR report named awrrpt_
1_146_147 is generated on the database instance with a database ID value of
33091735209.

Generating Automatic Workload Repository Compare Periods Reports

While an AWR report shows AWR data between two snapshots (or two points in
time), the AWR Compare Periods report shows the difference between two periods (or
two AWR reports, which equates to four snapshots). Using the AWR Compare Periods
report helps you to identify detailed performance attributes and configuration settings
that differ between two time periods.

For example, if the application workload is known to be stable between 10:00 p.m. and
midnight every night, but the performance on a particular Thursday was poor
between 10:00 p.m. and 11:00 p.m., generating an AWR Compare Periods report for
Thursday from 10:00 p.m. to 11:00 p.m. and Wednesday from 10:00 p.m. to 11:00 p.m.
should identify configuration settings, workload profile, and statistics that were
different in these time periods. Based on the differences, you can more easily diagnose
the cause of the performance degradation. The two time periods selected for the AWR
Compare Periods Report can be of different durations because the report normalizes
the statistics by the amount of time spent on the database for each time period, and
presents statistical data ordered by the largest difference between the periods.

The AWR Compare Periods reports are divided into multiple sections. The HTML
report includes links that can be used to navigate quickly between sections. The
content of the report contains the workload profile of the system for the selected range
of snapshots.

The primary interface for generating AWR Compare Periods reports is Oracle
Enterprise Manager. Whenever possible, you should generate AWR Compare Periods
reports using Oracle Enterprise Manager, as described in Oracle Database 2 Day +
Performance Tuning Guide. If Oracle Enterprise Manager is unavailable, you can
generate AWR Compare Periods reports by running SQL scripts, as described in the
following sections:

= Generating an AWR Compare Periods Report
= Generating an Oracle RAC AWR Compare Periods Report

= Generating an AWR Compare Periods Report on a Specific Database Instance

5-28 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

Generating an Oracle RAC AWR Compare Periods Report on Specific Database
Instances

To run these scripts, you must be granted the DBA role.

Generating an AWR Compare Periods Report

The awrddrpt . sql SQL script generates an HTML or text report that compares
detailed performance attributes and configuration settings between two selected time
periods.

To generate an AWR Compare Periods report:

1.

At the SQL prompt, enter:

@SORACLE_HOME/rdbms/admin/awrddrpt.sql

Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

Specify the number of days for which you want to list snapshot IDs in the first
time period.

Enter value for num days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102
Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the
ending snapshot for the first time period.

Specify the number of days for which you want to list snapshot IDs in the second
time period.

Enter value for num days2: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the
ending snapshot for the second time period.

Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrdiff_1_102_1_126.txt

In this example, the default name is accepted and an AWR report named awrdiff_
1_102_126 is generated.

Automatic Performance Statistics 5-29

Managing the Automatic Workload Repository

Generating an Oracle RAC AWR Compare Periods Report

The awrgdrpt . sql SQL script generates an HTML or text report that compares
detailed performance attributes and configuration settings between two selected time
periods using the current database identifier and all available database instances in an
Oracle RAC environment.

Note: In an Oracle RAC environment, you should always try to
generate an HTML report (instead of a text report) because they are
much easier to read.

To generate an AWR Compare Periods report in an Oracle RAC environment:
1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrgdrpt.sgl

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

3. Specify the number of days for which you want to list snapshot IDs in the first
time period.

Enter value for num days: 2
A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

4. Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102
Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the
ending snapshot for the first time period.

5. Specify the number of days for which you want to list snapshot IDs in the second
time period.

Enter value for num days2: 1
A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

6. Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the
ending snapshot for the second time period.

7. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrracdiff_lst_1_2nd_1.html

5-30 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

In this example, the default name is accepted and an AWR report named awrrac_
1st_1_2nd_1.html is generated.

Generating an AWR Compare Periods Report on a Specific Database Instance

The awrddrpi.sql SQL script generates an HTML or text report that compares
detailed performance attributes and configuration settings between two selected time
periods on a specific database and instance. This script enables you to specify a
database identifier and instance for which the AWR Compare Periods report will be
generated.

To generate an AWR Compare Periods report on a specified database instance:

1.

At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrddrpi.sqgl

Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.
A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema

DB Id Inst Num DB Name Instance Host
3309173529 1 MAIN main exampl690
3309173529 1 TINT251 tint251 samp251

Enter the values for the database identifier (dbid) and instance number (inst_
num) for the first time period:

Enter value for dbid: 3309173529

Using 3309173529 for Database Id for the first pair of snapshots
Enter value for inst_num: 1

Using 1 for Instance Number for the first pair of snapshots

Specify the number of days for which you want to list snapshot IDs in the first
time period.

Enter value for num days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102

Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the
ending snapshot for the first time period.

Enter the values for the database identifier (dbid) and instance number (inst_
num) for the second time period:

Enter value for dbid2: 3309173529

Using 3309173529 for Database Id for the second pair of snapshots
Enter value for inst_num2: 1

Using 1 for Instance Number for the second pair of snapshots

Automatic Performance Statistics 5-31

Managing the Automatic Workload Repository

7. Specify the number of days for which you want to list snapshot IDs in the second
time period.

Enter value for num days2: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

8. Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the
ending snapshot for the second time period.

9. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrdiff_1_102_1_126.txt

In this example, the default name is accepted and an AWR report named awrdiff_
1_102_126 is generated on the database instance with a database ID value of
3309173529.

Generating an Oracle RAC AWR Compare Periods Report on Specific Database
Instances

The awrgdrpi.sql SQL script generates an HTML or text report that compares
detailed performance attributes and configuration settings between two selected time
periods using specific databases and instances in an Oracle RAC environment. This
script enables you to specify database identifiers and a comma-delimited list of
database instances for which the AWR Compare Periods report will be generated.

Note: In an Oracle RAC environment, you should always try to
generate an HTML report (instead of a text report) because they are
much easier to read.

To generate an AWR Compare Periods report on a specified database instance in an
Oracle RAC environment:

1. At the SQL prompt, enter:

@SORACLE_HOME/rdbms/admin/awrgdrpi.sql

2. Specify whether you want an HIML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.
3. Alist of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema

DB Id Inst Num DB Name Instance Host
3309173529 1 MAIN main exampl690
3309173529 1 TINT251 tint251 samp251

5-32 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

3309173529 2 TINT251 tint252 samp252
3309173529 3 TINT251 tint253 samp253
3309173529 4 TINT251 tint254 samp254

Enter the values for the database identifier (dbid) and instance number
(instance_numbers_or_all) for the first time period:

Enter value for dbid: 3309173529

Using 3309173529 for Database Id for the first pair of snapshots
Enter value for inst_num: 1,2

Using instances 1 for the first pair of snapshots

Specify the number of days for which you want to list snapshot IDs in the first
time period.

Enter value for num days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102
Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the
ending snapshot for the first time period.

A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema

DB Id Inst Num DB Name Instance Host
3309173529 1 MAIN main exampl690
3309173529 1 TINT251 tint251 samp251
3309173529 2 TINT251 tint252 samp252
3309173529 3 TINT251 tint253 samp253
3309173529 4 TINT251 tint254 samp254

INSTNUM1
1,2

Enter the values for the database identifier (dbid2) and instance numbers
(instance_numbers_or_all2) for the second time period:

Enter value for dbid2: 3309173529
Using 3309173529 for Database Id for the second pair of snapshots
Enter value for instance_numbers_or_all2: 3,4

Specify the number of days for which you want to list snapshot IDs in the second
time period.

Enter value for num days2: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

Automatic Performance Statistics 5-33

Managing the Automatic Workload Repository

In this example, the snapshot with a snapshot ID of 126 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the
ending snapshot for the second time period.

9. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrracdiff_lst_1_2nd_1.html

In this example, the default name is accepted and an AWR report named awrrac_
1st_1_2nd_1.html is generated.

Generating Active Session History Reports

Use Active Session History (ASH) reports to perform analysis of:
» Transient performance problems that typically last for a few minutes

= Scoped or targeted performance analysis by various dimensions or their
combinations, such as time, session, module, action, or SQL_ID

Transient performance problems are short-lived and do not appear in the Automatic
Database Diagnostics Monitor (ADDM) analysis. ADDM tries to report the most
significant performance problems during an analysis period in terms of their impact
on DB time. If a particular problem lasts for a very short duration, then its severity
might be averaged out or minimized by other performance problems in the analysis
period. Therefore, the problem may not appear in the ADDM findings. Whether a
performance problem is captured by ADDM depends on its duration compared to the
interval between the AWR snapshots.

If a performance problem lasts for a significant portion of the time between snapshots,
it will be captured by ADDM. For example, if the snapshot interval is set to one hour, a
performance problem that lasts for 30 minutes should not be considered as a transient
performance problem because its duration represents a significant portion of the
snapshot interval and will likely be captured by ADDM.

However, a performance problem that lasts for only 2 minutes could be a transient
performance problem because its duration represents a small portion of the snapshot
interval and will likely not show up in the ADDM findings. For example, if the user
notifies you that the system was slow between 10:00 p.m. and 10:10 p.m., but the
ADDM analysis for the time period between 10:00 p.m. and 11:00 p.m. does not show a
performance problem, a transient performance problem probably occurred that lasted
for only a few minutes of the 10-minute interval reported by the user.

The ASH reports are divided into multiple sections. The HTML report includes links
that can be used to navigate quickly between sections. The content of the report
contains ASH information used to identify blocker and waiter identities and their
associated transaction identifiers and SQL for a specified duration. For more
information on ASH, see "Active Session History" on page 5-3.

The primary interface for generating ASH reports is Oracle Enterprise Manager.
Whenever possible, you should generate ASH reports using Oracle Enterprise
Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle
Enterprise Manager is unavailable, you can generate ASH reports by running SQL
scripts, as described in the following sections:

s Generating an ASH Report
= Generating an ASH Report on a Specific Database Instance

= Generating an Oracle RAC ASH Report

5-34 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

Generating an ASH Report

The ashrpt.sqgl SQL script generates an HTML or text report that displays ASH
information for a specified duration.

To generate an ASH report:

1.

At the SQL prompt, enter:

@SORACLE_HOME/rdbms/admin/ashrpt.sqgl

Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.
Specify the begin time in minutes before the system date:

Enter value for begin_time: -10

In this example, 10 minutes before the current time is selected.

Enter the duration in minutes that the report for which you want to capture ASH
information from the begin time.

Enter value for duration:

In this example, the default duration of system date minus begin time is accepted.
Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name ashrpt_1_0310_0131.txt

In this example, the default name is accepted and an ASH report named ashrpt_
1_0310_0131 is generated. The report will gather ASH information beginning from
10 minutes before the current time and ending at the current time.

Generating an ASH Report on a Specific Database Instance

The ashrpti.sql SQL script generates an HTML or text report that displays ASH
information for a specified duration for a specified database and instance. This script
enables you to specify a database and instance before setting the time frame to collect
ASH information.

To generate an ASH report on a specified database instance:

1.

At the SQL prompt, enter:

@SORACLE_HOME/rdbms/admin/ashrpti.sql

Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.
A list of available database IDs and instance numbers are displayed:

Instances in this Workload Repository schema

DB Id Inst Num DB Name Instance Host
3309173529 1 MAIN main exampl690
3309173529 1 TINT251 tint251 samp251

Automatic Performance Statistics 5-35

Managing the Automatic Workload Repository

Enter the values for the database identifier (dbid) and instance number (inst_
num) :

Enter value for dbid: 3309173529
Using 3309173529 for database id
Enter value for inst_num: 1

4. This step is applicable only if you are generating an ASH report on an Active Data
Guard physical standby instance. If this is not the case, you may skip this step.

To generate an ASH report on a physical standby instance, the standby database
must be opened read-only. The ASH data on disk represents activity on the
primary database and the ASH data in memory represents activity on the standby
database.

Specify whether to generate the report using data sampled from the primary or
standby database:

You are running ASH report on a Standby database.

To generate the report over data sampled on the Primary database, enter 'P'.
Defaults to 'S' - data sampled in the Standby database.

Enter value for stdbyflag:

Using Primary (P) or Standby (S): S

In this example, the default value of Standby (S) is selected.
5. Specify the begin time in minutes before the system date:

Enter value for begin_time: -10

In this example, 10 minutes before the current time is selected.

6. Enter the duration in minutes that the report for which you want to capture ASH
information from the begin time.

Enter value for duration:

In this example, the default duration of system date minus begin time is accepted.

7. Specify the slot width in seconds that will be used in the Activity Over Time
section of the report:

Enter value for slot_width:

In this example, the default value is accepted. For more information about the
Activity Over Time section and how to specify the slot width, see "Activity Over
Time" on page 5-41.

8. Follow the instructions as explained in the subsequent prompts and enter values
for the following report targets:

m target_session_id

m target_sqgl_id

m target_wait_class

m target_service_hash
m target_module_name
m target_action_name

m target_client_id

5-36 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

m target_plsqgl_entry
9. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name ashrpt_1_0310_0131.txt

In this example, the default name is accepted and an ASH report named ashrpt_
1_0310_0131 is generated. The report will gather ASH information on the database
instance with a database ID value of 3309173529 beginning from 10 minutes before
the current time and ending at the current time.

Generating an Oracle RAC ASH Report

The ashrpti.sql SQL script generates an HTML or text report that displays ASH
information for a specified duration for specified databases and instances in an Oracle
RAC environment. Only ASH data that is written to disk will be used to generate the
report. This report will only use ASH samples from the last 10 minutes that are found
in the DBA_HIST_ACTIVE_SESS_HISTORY table.

To generate an ASH report in an Oracle RAC environment:
1. At the SQL prompt, enter:

@SORACLE_HOME/rdbms/admin/ashrpti.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.
3. Alist of available database IDs and instance numbers are displayed:

Instances in this Workload Repository schema

DB Id Inst Num DB Name Instance Host
3309173529 1 MAIN main exampl690
3309173529 1 TINT251 tint251 samp251
3309173529 2 TINT251 tint252 samp252
3309173529 3 TINT251 tint253 samp253
3309173529 4 TINT251 tint254 samp254

Enter the values for the database identifier (dbid) and instance number (inst_
num):

Enter value for dbid: 3309173529

Using database id: 3309173529

Enter instance numbers. Enter 'ALL' for all instances in an Oracle
RAC cluster or explicitly specify list of instances (e.g., 1,2,3).
Defaults to current instance.

Enter value for inst_num: ALL

Using instance number (s): ALL

4. Specify the begin time in minutes before the system date:

Enter value for begin_time: -1:10

In this example, 1 hour and 10 minutes before the current time is selected.

5. Enter the duration in minutes that the report for which you want to capture ASH
information from the begin time:

Automatic Performance Statistics 5-37

Managing the Automatic Workload Repository

Enter value for duration: 10

In this example, the duration is set to 10 minutes.

Specify the slot width in seconds that will be used in the Activity Over Time
section of the report:

Enter value for slot_width:

In this example, the default value is accepted. For more information about the
Activity Over Time section and how to specify the slot width, see "Activity Over
Time" on page 5-41.

Follow the instructions as explained in the subsequent prompts and enter values
for the following report targets:

m target_session_id

m target_sqgl_id

m target_wait_class

m target_service_hash

m target_module_name

m target_action_name

m target_client_id

m target_plsqgl_entry

Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name ashrpt_rac_0310_0131.txt

In this example, the default name is accepted and an ASH report named ashrpt_
rac_0310_0131 is generated. The report will gather ASH information on all
instances belonging to the database with a database ID value of 3309173529
beginning from 1 hour and 10 minutes before the current time and ending at 1
hour before the current time.

Using Active Session History Reports

After generating an ASH report, you can review the contents to identify transient
performance problems.

The contents of the ASH report are divided into the following sections:

Top Events

Load Profile

Top SQL

Top PL/SQL

Top Java

Top Sessions

Top Objects/Files/Latches
Activity Over Time

5-38 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

See Also: Oracle Real Application Clusters Administration and
Deployment Guide for information about sections in the ASH report
that are specific to Oracle Real Application Clusters (Oracle RAC)

Top Events

The Top Events section describes the top wait events of the sampled session activity
categorized by user, background, and priority. Use the information in this section to
identify the wait events that may be the cause of the transient performance problem.

The Top Events section contains the following subsections:

Top User Events

This subsection lists the top wait events from user processes that accounted for the
highest percentages of sampled session activity.

Top Background Events

This subsection lists the top wait events from backgrounds that accounted for the
highest percentages of sampled session activity.

Top Event P1/P2/P3

This subsection lists the wait event parameter values of the top wait events that
accounted for the highest percentages of sampled session activity, ordered by the
percentage of total wait time (% Event). For each wait event, values in the P1
Value, P2 Value, P3 Value column correspond to wait event parameters displayed
in the Parameter 1, Parameter 2, and Parameter 3 columns.

Load Profile

The Load Profile section describes the load analyzed in the sampled session activity.
Use the information in this section to identify the service, client, or SQL command
type that may be the cause of the transient performance problem.

The Load Profile section contains the following subsections:

Top Service/Module

This subsection lists the services and modules that accounted for the highest
percentages of sampled session activity.

Top Client IDs

This subsection lists the clients that accounted for the highest percentages of
sampled session activity based on their client ID, which is the application-specific
identifier of the database session.

Top SQL Command Types

This subsection lists the SQL command types, such as SELECT or UPDATE, that
accounted for the highest percentages of sampled session activity.

Top Phases of Execution

This subsection lists the phases of execution, such as SQL, PL/SQL, and Java
compilation and execution, that accounted for the highest percentages of sampled
session activity.

Automatic Performance Statistics 5-39

Managing the Automatic Workload Repository

Top SQL

The Top SQL section describes the top SQL statements of the sampled session activity.
Use this information to identify high-load SQL statements that may be the cause of the
transient performance problem.

The Top SQL section contains the following subsections:
= Top SQL with Top Events

s Top SQL with Top Row Sources

= Top SQL Using Literals

s Top Parsing Module/Action

s Complete List of SQL Text

Top SQL with Top Events The Top SQL with Top Events subsection lists the SQL
statements that accounted for the highest percentages of sampled session activity and
the top wait events that were encountered by these SQL statements. The Sampled # of
Executions column shows how many distinct executions of a particular SQL statement
were sampled.

Top SQL with Top Row Sources The Top SQL with Top Row Sources subsection lists the
SQL statements that accounted for the highest percentages of sampled session activity
and their detailed execution plan information. You can use this information to identify
which part of the SQL execution contributed significantly to the SQL elapsed time.

Top SQL Using Literals The Top SQL Using Literals subsection lists the SQL statements
using literals that accounted for the highest percentages of sampled session activity.
You should review the statements listed in this report to determine whether the literals
can be replaced with bind variables.

Top Parsing Module/Action The Top Parsing Module/Action subsection lists the module
and action that accounted for the highest percentages of sampled session activity while
parsing the SQL statement.

Complete List of SQL Text The Complete List of SQL Text subsection displays the entire
text of the Top SQL statements shown in this section.

Top PL/SQL

The Top PL/SQL section lists the PL/SQL procedures that accounted for the highest
percentages of sampled session activity. The PL/SQL Entry Subprogram column lists
the application's top-level entry point into PL/SQL. The PL/SQL Current Subprogram
column lists the PL/SQL subprogram being executed at the point of sampling. If the
value of this column is SQL, then the % Current column shows the percentage of time
spent executing SQL for this subprogram.

Top Java
The Top Java section describes the top Java programs in the sampled session activity.

Top Sessions

The Top Sessions section describes the sessions that were waiting for a particular wait
event. Use this information to identify the sessions that accounted for the highest
percentages of sampled session activity, which may be the cause of the transient
performance problem.

5-40 Oracle Database Performance Tuning Guide

Managing the Automatic Workload Repository

The Top Sessions section contains the following subsections:
n Top Sessions
s Top Blocking Sessions

= Top Sessions Running PQs

Top Sessions The Top Session subsection lists the sessions that were waiting for a
particular wait event that accounted for the highest percentages of sampled session
activity.

Top Blocking Sessions The Top Blocking Sessions subsection lists the blocking sessions
that accounted for the highest percentages of sampled session activity.

Top Sessions Running PQs The Top Sessions Running PQs subsection lists the sessions
running parallel queries (PQs) that were waiting for a particular wait event, which
accounted for the highest percentages of sampled session activity.

Top Objects/Files/Latches

The Top Objects/Files/Latches section provides additional information about the most
commonly-used database resources and contains the following subsections:

= Top DB Objects
= Top DB Files
= Top Latches

Top DB Objects The Top DB Objects subsection lists the database objects (such as tables
and indexes) that accounted for the highest percentages of sampled session activity.

Top DB Files The Top DB Files subsection lists the database files that accounted for the
highest percentages of sampled session activity.

Top Latches The Top Latches subsection lists the latches that accounted for the highest
percentages of sampled session activity.

Latches are simple, low-level serialization mechanisms to protect shared data
structures in the System Global Area (SGA). For example, latches protect the list of
users currently accessing the database and the data structures describing the blocks in
the buffer cache. A server or background process acquires a latch for a very short time
while manipulating or looking at one of these structures. The implementation of
latches is operating system-dependent, particularly regarding whether and how long a
process waits for a latch.

Activity Over Time

The Activity Over Time section is one of the most informative sections of the ASH
report. This section is particularly useful for longer time periods because it provides
in-depth details about activities and workload profiles during the analysis period. The
Activity Over Time section is divided into 10 time slots. The size of each time slot
varies based on the duration of the analysis period. The first and last slots are usually
odd-sized. All inner slots are equally sized and can be compared to each other. For
example, if the analysis period lasts for 10 minutes, then all time slots will 1 minute
each. However, if the analysis period lasts for 9 minutes and 30 seconds, then the outer
slots may be 15 seconds each and the inner slots will be 1 minute each.

Automatic Performance Statistics 5-41

Managing the Automatic Workload Repository

Each of the time slots contains information regarding that particular time slot, as
described in Table 5-2.

Table 5-2 Activity Over Time

Column Description

Slot Time (Duration) Duration of the slot

Slot Count Number of sampled sessions in the slot

Event Top three wait events in the slot

Event Count Number of ASH samples waiting for the wait event

% Event Percentage of ASH samples waiting for wait events in the entire

analysis period

When comparing the inner slots, perform a skew analysis by identifying spikes in the
Event Count and Slot Count columns. A spike in the Event Count column indicates an
increase in the number of sampled sessions waiting for a particular event. A spike in
the Slot Count column indicates an increase in active sessions, because ASH data is
sampled from active sessions only and a relative increase in database workload.
Typically, when the number of active session samples and the number of sessions
associated with a wait event increases, the slot may be the cause of the transient
performance problem.

To generate the ASH report with a user-defined slot size, run the ashrpti.sql script,
as described in "Generating an ASH Report on a Specific Database Instance" on
page 5-35.

5-42 Oracle Database Performance Tuning Guide

6

Automatic Performance Diagnostics

This chapter describes Oracle Database automatic features for performance diagnosing
and tuning.

This chapter contains the following topics:

s Overview of the Automatic Database Diagnostic Monitor
s Setting Up ADDM

» Diagnosing Database Performance Problems with ADDM
s Views with ADDM Information

See Also: Oracle Database 2 Day + Performance Tuning Guide for
information about using Oracle Enterprise Manager to diagnose and
tune the database with the Automatic Database Diagnostic Monitor

Overview of the Automatic Database Diagnostic Monitor

When problems occur with a system, it is important to perform accurate and timely
diagnosis of the problem before making any changes to a system. Oftentimes, a
database administrator (DBA) simply looks at the symptoms and immediately starts
changing the system to fix those symptoms. However, an accurate diagnosis of the
actual problem in the initial stage significantly increases the probability of success in
resolving the problem.

With Oracle Database, the statistical data needed for accurate diagnosis of a problem is
stored in the Automatic Workload Repository (AWR). The Automatic Database
Diagnostic Monitor (ADDM):

= Analyzes the AWR data on a regular basis

= Diagnoses the root causes of performance problems

= Provides recommendations for correcting any problems
= Identifies non-problem areas of the system

Because AWR is a repository of historical performance data, ADDM can analyze
performance issues after the event, often saving time and resources in reproducing a
problem. For information about the AWR, see "Overview of the Automatic Workload
Repository" on page 5-8.

In most cases, ADDM output should be the first place that a DBA looks when notified
of a performance problem. ADDM provides the following benefits:

= Automatic performance diagnostic report every hour by default

Automatic Performance Diagnostics 6-1

Overview of the Automatic Database Diagnostic Monitor

= Problem diagnosis based on decades of tuning expertise

s Time-based quantification of problem impacts and recommendation benefits
= Identification of root cause, not symptoms

= Recommendations for treating the root causes of problems

s Identification of non-problem areas of the system

= Minimal overhead to the system during the diagnostic process

It is important to realize that tuning is an iterative process, and fixing one problem can
cause the bottleneck to shift to another part of the system. Even with the benefit of
ADDM analysis, it can take multiple tuning cycles to reach acceptable system
performance. ADDM benefits apply beyond production systems; on development and
test systems, ADDM can provide an early warning of performance issues.

This section contains the following topics:

= ADDM Analysis

s Using ADDM with Oracle Real Application Clusters
= ADDM Analysis Results

= Reviewing ADDM Analysis Results: Example

ADDM Analysis

An ADDM analysis can be performed on a pair of AWR snapshots and a set of
instances from the same database. The pair of AWR snapshots define the time period
for analysis, and the set of instances define the target for analysis.

If you are using Oracle Real Application Clusters (Oracle RAC), ADDM has three
analysis modes:

s Database

In Database mode, ADDM analyzes all instances of the database.
= Instance

In Instance mode, ADDM analyzes a particular instance of the database.
= DPartial

In Partial mode, ADDM analyzes a subset of all database instances.

If you are not using Oracle RAC, ADDM can only function in Instance mode because
there is only one instance of the database.

An ADDM analysis is performed each time an AWR snapshot is taken and the results
are saved in the database. The time period analyzed by ADDM is defined by the last
two snapshots (the last hour by default). ADDM will always analyze the specified
instance in Instance mode. For non-Oracle RAC or single instance environments, the
analysis performed in the Instance mode is the same as a database-wide analysis. If
you are using Oracle RAC, ADDM will also analyze the entire database in Database
mode, as described in "Using ADDM with Oracle Real Application Clusters" on

page 6-3. After an ADDM completes its analysis, you can view the results using Oracle
Enterprise Manager, or by viewing a report in a SQL*Plus session.

ADDM analysis is performed top down, first identifying symptoms, and then refining
them to reach the root causes of performance problems. The goal of the analysis is to
reduce a single throughput metric called DB time. DB time is the cumulative time spent
by the database in processing user requests. It includes wait time and CPU time of all

6-2 Oracle Database Performance Tuning Guide

Overview of the Automatic Database Diagnostic Monitor

non-idle user sessions. DB time is displayed in the V$SESS_TIME_MODEL and V$SYS_
TIME_MODEL views.

See Also:

» Oracle Database Reference for information about the VSSESS_
TIME_MODEL and V$SYS_TIME_MODEL views

= "Time Model Statistics" on page 5-3 for a discussion of time
model statistics and DB time

» Oracle Database Concepts for information about server processes
By reducing DB time, the database is able to support more user requests using the same
resources, which increases throughput. The problems reported by ADDM are sorted

by the amount of DB time they are responsible for. System areas that are not
responsible for a significant portion of DB time are reported as non-problem areas.

The types of problems that ADDM considers include the following:

s CPU bottlenecks - Is the system CPU bound by Oracle Database or some other
application?

s Undersized Memory Structures - Are the Oracle Database memory structures,
such as the SGA, PGA, and buffer cache, adequately sized?

s 1/O capacity issues - Is the I/O subsystem performing as expected?

= High load SQL statements - Are there any SQL statements which are consuming
excessive system resources?

= Highload PL/SQL execution and compilation, and high-load Java usage

s Oracle RAC specific issues - What are the global cache hot blocks and objects; are
there any interconnect latency issues?

= Sub-optimal use of Oracle Database by the application - Are there problems with
poor connection management, excessive parsing, or application level lock
contention?

s Database configuration issues - Is there evidence of incorrect sizing of log files,
archiving issues, excessive checkpoints, or sub-optimal parameter settings?

s Concurrency issues - Are there buffer busy problems?

= Hot objects and top SQL for various problem areas

Note: This is not a comprehensive list of all problem types that
ADDM considers in its analysis.

ADDM also documents the non-problem areas of the system. For example, wait event
classes that are not significantly impacting the performance of the system are
identified and removed from the tuning consideration at an early stage, saving time
and effort that would be spent on items that do not impact overall system
performance.

Using ADDM with Oracle Real Application Clusters

If you are using Oracle RAC, you can run ADDM in Database analysis mode to
analyze the throughput performance of all instances of the database. In Database
mode, ADDM considers DB time as the sum of the database time for all database

Automatic Performance Diagnostics 6-3

Overview of the Automatic Database Diagnostic Monitor

instances. Using the Database analysis mode enables you to view all findings that are
significant to the entire database in a single report, instead of reviewing a separate
report for each instance.

The Database mode report includes findings about database resources (such as I/O
and interconnect). The report also aggregates findings from the various instances if
they are significant to the entire database. For example, if the CPU load on a single
instance is high enough to affect the entire database, the finding will appear in the
Database mode analysis, which will point to the particular instance responsible for the
problem.

See Also: Oracle Database 2 Day + Real Application Clusters Guide for
information about using ADDM with Oracle RAC

ADDM Analysis Results

In addition to problem diagnostics, ADDM recommends possible solutions. ADDM
analysis results are represented as a set of findings. See Example 6-1 on page 6-5 for an
example of ADDM analysis result. Each ADDM finding can belong to one of the
following types:

= Problem findings describe the root cause of a database performance problem.

= Symptom findings contain information that often lead to one or more problem
findings.

= Information findings are used for reporting information that are relevant to
understanding the performance of the database, but do not constitute a
performance problem (such as non-problem areas of the database and the activity
of automatic database maintenance).

= Warning findings contain information about problems that may affect the
completeness or accuracy of the ADDM analysis (such as missing data in the
AWR).

Each problem finding is quantified by an impact that is an estimate of the portion of DB
time caused by the finding's performance issue. A problem finding can be associated
with a list of recommendations for reducing the impact of the performance problem.
The types of recommendations include:

s Hardware changes: adding CPUs or changing the I/O subsystem configuration
s Database configuration: changing initialization parameter settings

= Schema changes: hash partitioning a table or index, or using automatic
segment-space management (ASSM)

= Application changes: using the cache option for sequences or using bind
variables

= Using other advisors: running SQL Tuning Advisor on high-load SQL or running
the Segment Advisor on hot objects

A list of recommendations can contain various alternatives for solving the same
problem; you do not have to apply all the recommendations to solve a specific
problem. Each recommendation has a benefit which is an estimate of the portion of DB
time that can be saved if the recommendation is implemented. Recommendations are
composed of actions and rationales. You must apply all the actions of a
recommendation to gain the estimated benefit. The rationales are used for explaining
why the set of actions were recommended and to provide additional information to
implement the suggested recommendation.

6-4 Oracle Database Performance Tuning Guide

Setting Up ADDM

Reviewing ADDM Analysis Results: Example
Consider the following section of an ADDM report in Example 6-1.

Example 6—-1 Example ADDM Report
FINDING 1: 31% impact (7798 seconds)

SQL statements were not shared due to the usage of literals. This resulted in
additional hard parses which were consuming significant database time.

RECOMMENDATION 1: Application Analysis, 31% benefit (7798 seconds)

ACTION: Investigate application logic for possible use of bind variables
instead of literals. Alternatively, you may set the parameter
"cursor_sharing" to "force".

RATIONALE: SQL statements with PLAN_HASH _VALUE 3106087033 were found to be
using literals. Look in VS$SQL for examples of such SQL statements.

In Example 6-1, the finding points to a particular root cause, the usage of literals in
SQL statements, which is estimated to have an impact of about 31% of total DB time in
the analysis period.

The finding has a recommendation associated with it, composed of one action and one
rationale. The action specifies a solution to the problem found and is estimated to have
a maximum benefit of up to 31% DB time in the analysis period. Note that the benefit is
given as a portion of the total DB time and not as a portion of the finding's impact. The
rationale provides additional information on tracking potential SQL statements that
were using literals and causing this performance issue. Using the specified plan hash
value of SQL statements that could be a problem, a DBA could quickly examine a few
sample statements.

When a specific problem has multiple causes, the ADDM may report multiple problem
and symptom findings. In this case, the impacts of these multiple findings can contain
the same portion of DB time. Because the performance issues of findings can overlap,
the sum of the impacts of the findings can exceed 100% of DB time. For example, if a
system performs many reads, then ADDM might report a SQL statement responsible
for 50% of DB time due to I/O activity as one finding, and an undersized buffer cache
responsible for 75% of DB time as another finding.

When multiple recommendations are associated with a problem finding, the
recommendations may contain alternatives for solving the problem. In this case, the
sum of the recommendations' benefits may be higher than the finding's impact.

When appropriate, an ADDM action may have multiple solutions for you to choose
from. In the example, the most effective solution is to use bind variables. However, it is
often difficult to modify the application. Changing the value of the CURSOR_SHARING
initialization parameter is much easier to implement and can provide significant
improvement.

Setting Up ADDM

Automatic database diagnostic monitoring is enabled by default and is controlled by
the CONTROL_MANAGEMENT PACK_ACCESS and the STATISTICS_ LEVEL initialization
parameters.

The CONTROL_MANAGEMENT_PACK_ACCESS parameter should be set to DIAGNOSTIC or
DIAGNOSTIC+TUNING to enable automatic database diagnostic monitoring. The default
SeﬂhlgiSDIAGNOSTIC+TUNING.Setﬁng(3ONTROL_MANAGEMENT_PACK_ACCESS‘K)NONE
disables ADDM.

Automatic Performance Diagnostics 6-5

Diagnosing Database Performance Problems with ADDM

The STATISTICS_LEVEL parameter should be set to the TYPICAL or ALL to enable
automatic database diagnostic monitoring. The default setting is TYPICAL. Setting
STATISTICS_LEVEL to BASIC disables many Oracle Database features, including
ADDM, and is strongly discouraged.

See Also: Oracle Database Reference for information about the
CONTROL_MANAGEMENT_PACK_ACCESS and STATISTICS_LEVEL
initialization parameters

ADDM analysis of I/O performance partially depends on a single argument, DBIO_
EXPECTED, that describes the expected performance of the I/O subsystem. The value of
DBIO_EXPECTED is the average time it takes to read a single database block in
microseconds. Oracle Database uses the default value of 10 milliseconds, which is an
appropriate value for most modern hard drives. If your hardware is significantly
different, such as very old hardware or very fast RAM disks, consider using a different
value.

To determine the correct setting for DBIO_EXPECTED parameter:

1. Measure the average read time of a single database block read for your hardware.
Note that this measurement is for random I/O, which includes seek time if you
use standard hard drives. Typical values for hard drives are between 5000 and
20000 microseconds.

2. Set the value one time for all subsequent ADDM executions. For example, if the
measured value if 8000 microseconds, you should execute the following command
as SYS user:

EXECUTE DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER (
'"ADDM', 'DBIO_EXPECTED', 8000);

Diagnosing Database Performance Problems with ADDM

To diagnose database performance problems, first review the ADDM analysis results
that are automatically created each time an AWR snapshot is taken. If a different
analysis is required (such as a longer analysis period, using a different DBIO_EXPECTED
setting, or changing the analysis mode), you can run ADDM manually as described in
this section.

ADDM can analyze any two AWR snapshots (on the same database), as long as both
snapshots are still stored in the AWR (have not been purged). ADDM can only analyze
instances that are started before the beginning snapshot and remain running until the
ending snapshot. Additionally, ADDM will not analyze instances that experience
significant errors when generating the AWR snapshots. In such cases, ADDM will
analyze the largest subset of instances that did not experience these problems.

The primary interface for diagnostic monitoring is Oracle Enterprise Manager.
Whenever possible, you should run ADDM using Oracle Enterprise Manager, as
described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle Enterprise
Manager is unavailable, you can run ADDM using the DBMS_ADDM package. In order to
run the DBMS_ADDM APIs, the user must be granted the ADVISOR privilege.

This section contains the following topics:
= Running ADDM in Database Mode

= Running ADDM in Instance Mode

= Running ADDM in Partial Mode

= Displaying an ADDM Report

6-6 Oracle Database Performance Tuning Guide

Diagnosing Database Performance Problems with ADDM

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_ADDM package

Running ADDM in Database Mode

For Oracle RAC configurations, you can run ADDM in Database mode to analyze all
instances of the databases. For single-instance configurations, you can still run ADDM
in Database mode; ADDM will simply behave as if running in Instance mode.

To run ADDM in Database mode, use the DBMS_ADDM.ANALYZE_DB procedure:

BEGIN
DBMS_ADDM.ANALYZE_DB (
task_name IN OUT VARCHAR2,
begin_snapshot IN NUMBER,
end_snapshot IN NUMBER,
db_id IN NUMBER := NULL) ;
END;

/

The task_name parameter specifies the name of the analysis task that will be created.
The begin_snapshot parameter specifies the snapshot number of the beginning
snapshot in the analysis period. The end_snapshot parameter specifies the snapshot
number of the ending snapshot in the analysis period. The db_id parameter specifies
the database identifier of the database that will be analyzed. If unspecified, this
parameter defaults to the database identifier of the database to which you are
currently connected.

The following example creates an ADDM task in database analysis mode, and
executes it to diagnose the performance of the entire database during the time period
defined by snapshots 137 and 145:

VAR tname VARCHAR2 (30);

BEGIN
:tname := 'ADDM for 7PM to 9PM';
DBMS_ADDM.ANALYZE DB(:tname, 137, 145);
END;

/

Running ADDM in Instance Mode

To analyze a particular instance of the database, you can run ADDM in Instance mode.
To run ADDM in Instance mode, use the DBMS_ADDM.ANALYZE_INST procedure:

BEGIN

DBMS_ADDM.ANALYZE_INST (
task_name IN OUT VARCHAR2,
begin_snapshot IN NUMBER,
end_snapshot IN NUMBER,
instance_number IN NUMBER := NULL,
db_id IN NUMBER := NULL) ;

END;

/

The task_name parameter specifies the name of the analysis task that will be created.
The begin_snapshot parameter specifies the snapshot number of the beginning
snapshot in the analysis period. The end_snapshot parameter specifies the snapshot
number of the ending snapshot in the analysis period. The instance_number
parameter specifies the instance number of the instance that will be analyzed. If

Automatic Performance Diagnostics 6-7

Diagnosing Database Performance Problems with ADDM

unspecified, this parameter defaults to the instance number of the instance to which
you are currently connected. The db_id parameter specifies the database identifier of
the database that will be analyzed. If unspecified, this parameter defaults to the
database identifier of the database to which you are currently connected.

The following example creates an ADDM task in instance analysis mode, and executes
it to diagnose the performance of instance number 1 during the time period defined by
snapshots 137 and 145:

VAR tname VARCHAR2 (30);
BEGIN
:tname := 'my ADDM for 7PM to 9PM';
DBMS_ADDM.ANALYZE_INST(:tname, 137, 145, 1);
END;
/

Running ADDM in Partial Mode

To analyze a subset of all database instances, you can run ADDM in Partial mode. To
run ADDM in Partial mode, use the DBMS_ADDM.ANALYZE_PARTIAL procedure:

BEGIN
DBMS_ADDM.ANALYZE_PARTIAL (
task_name IN OUT VARCHAR2,
instance_numbers IN VARCHAR2,
begin_snapshot IN NUMBER,
end_snapshot IN NUMBER,
db_id IN NUMBER := NULL) ;
END;

/

The task_name parameter specifies the name of the analysis task that will be created.
The instance_numbers parameter specifies a comma-delimited list of instance
numbers of instances that will be analyzed. The begin_snapshot parameter specifies
the snapshot number of the beginning snapshot in the analysis period. The end_
snapshot parameter specifies the snapshot number of the ending snapshot in the
analysis period. The db_id parameter specifies the database identifier of the database
that will be analyzed. If unspecified, this parameter defaults to the database identifier
of the database to which you are currently connected.

The following example creates an ADDM task in partial analysis mode, and executes it
to diagnose the performance of instance numbers 1, 2, and 4, during the time period
defined by snapshots 137 and 145:

VAR tname VARCHAR2 (30);
BEGIN
:tname := 'my ADDM for 7PM to 9PM';
DBMS_ADDM.ANALYZE_PARTIAL(:tname, '1,2,4', 137, 145);
END;
/

Displaying an ADDM Report

To display a text report of an executed ADDM task, use the DBMS_ADDM.GET_REPORT
function:

DBMS_ADDM.GET_REPORT (
task_name IN VARCHAR2
RETURN CLOB) ;

6-8 Oracle Database Performance Tuning Guide

Views with ADDM Information

The following example displays a text report of the ADDM task specified by its task
name using the tname variable:

SET LONG 1000000 PAGESIZE 0;
SELECT DBMS_ADDM.GET_REPORT (:tname) FROM DUAL;

Note that the return type of a report is a CLOB, formatted to fit line size of 80. For
information about reviewing the ADDM analysis results in an ADDM report, see
"ADDM Analysis Results" on page 6-4.

Views with ADDM Information

Typically, you should view output and information from ADDM using Oracle
Enterprise Manager or ADDM reports.

However, you can display ADDM information through the DBA_ADVISOR views. This
group of views includes:

s DBA_ADVISOR_FINDINGS

This view displays all the findings discovered by all advisors. Each finding is
displayed with an associated finding ID, name, and type. For tasks with multiple
executions, the name of each task execution associated with each finding is also
listed.

= DBA_ADDM_FINDINGS

This view contains a subset of the findings displayed in the related DBA_ADVISOR_
FINDINGS view. This view only displays the ADDM findings discovered by all
advisors. Each ADDM finding is displayed with an associated finding ID, name,
and type.

s DBA_ADVISOR_FINDING_NAMES
List of all finding names registered with the advisor framework.
s DBA_ADVISOR_RECOMMENDATIONS

This view displays the results of completed diagnostic tasks with
recommendations for the problems identified in each execution. The
recommendations should be reviewed in the order of the RANK column, as this
relays the magnitude of the problem for the recommendation. The BENEFIT
column displays the benefit to the system you can expect after the
recommendation is performed. For tasks with multiple executions, the name of
each task execution associated with each advisor task is also listed.

= DBA_ADVISOR_TASKS

This view provides basic information about existing tasks, such as the task ID, task
name, and when the task was created. For tasks with multiple executions, the
name and type of the last or current execution associated with each advisor task is
also listed.

See Also: Oracle Database Reference for information about static data
dictionary views

Automatic Performance Diagnostics 6-9

Views with ADDM Information

6-10 Oracle Database Performance Tuning Guide

7

Configuring and Using Memory

This chapter explains how to allocate memory to Oracle Database memory caches, and
how to use those caches. Proper sizing and effective use of the Oracle Database
memory caches greatly improves database performance. Oracle recommends using
automatic memory management to manage the memory on your system. However,
you can choose to manually adjust the memory pools on your system, as described in
this chapter.

This chapter contains the following sections:

s Understanding Memory Allocation Issues

s Configuring and Using the Buffer Cache

s Configuring and Using the Shared Pool and Large Pool
» Configuring and Using the Redo Log Buffer

= PGA Memory Management

» Managing the Server and Client Result Caches

See Also: Oracle Database Concepts for information about the
memory architecture of an Oracle database

Understanding Memory Allocation Issues

Oracle Database stores information in memory caches and on disk. Memory access is
much faster than disk access. Disk access (physical I/O) take a significant amount of
time, compared with memory access, typically in the order of 10 milliseconds. Physical
I/0 also increases the CPU resources required, because of the path length in device
drivers and operating system event schedulers. For this reason, it is more efficient for
data requests of frequently accessed objects to be perform by memory, rather than also
requiring disk access.

A performance goal is to reduce the physical I/O overhead as much as possible, either
by making it more likely that the required data is in memory, or by making the process
of retrieving the required data more efficient.

This section contains the following topics:

s Oracle Memory Caches

= Automatic Memory Management

= Automatic Shared Memory Management
= Dynamically Changing Cache Sizes

= Application Considerations

Configuring and Using Memory 7-1

Understanding Memory Allocation Issues

s Operating System Memory Use

s Iteration During Configuration

Oracle Memory Caches

The main Oracle Database memory caches that affect performance are:
= Shared pool

= Large pool

= Java pool

= Buffer cache

m Streams pool size

= Log buffer

= Process-private memory, such as memory used for sorting and hash joins

Automatic Memory Management

Oracle strongly recommends the use of automatic memory management to manage
the memory on your system. Automatic memory management enables Oracle
Database to automatically manage and tune the instance memory. Automatic memory
management can be configured using a target memory size initialization parameter
(MEMORY_TARGET) and a maximum memory size initialization parameter (MEMORY_MAX_
TARGET). The database tunes to the target memory size, redistributing memory as
needed between the system global area (SGA) and the instance program global area
(instance PGA). Before setting any memory pool sizes, consider using the automatic
memory management feature of Oracle Database. If you must configure memory
allocations, consider using the Memory Advisor for managing memory.

See Also:

m Oracle Database Administrator’s Guide for information about
using automatic memory management

» Oracle Database 2 Day DBA for information about using the
Memory Advisor

Automatic Shared Memory Management

Automatic Shared Memory Management simplifies the configuration of the SGA. To
use Automatic Shared Memory Management, set the SGA_TARGET initialization
parameter to a nonzero value and set the STATISTICS_LEVEL initialization parameter to
TYPICAL or ALL. Set the value of the SGA_TARGET parameter to the amount of memory
that you intend to dedicate for the SGA. In response to the workload on the system,
the automatic SGA management distributes the memory appropriately for the
following memory pools:

= Database buffer cache (default pool)
= Shared pool

= Large pool

= Java pool

= Streams pool

7-2 Oracle Database Performance Tuning Guide

Understanding Memory Allocation Issues

If these automatically tuned memory pools had been set to nonzero values, those
values are used as minimum levels by Automatic Shared Memory Management. You
would set minimum values if an application component needs a minimum amount of
memory to function properly.

SGA_TARGET is a dynamic parameter that can be changed by accessing the SGA Size
Advisor from the Memory Parameters SGA page in Oracle Enterprise Manager, or by
querying the V$SGA_TARGET_ADVICE view and using the ALTER SYSTEM command. SGA_
TARGET can be set less than or equal to the value of SGA_MAX_SIZE initialization
parameter. Changes in the value of SGA_TARGET automatically resize the automatically
tuned memory pools.

See Also:

» Oracle Database Concepts for information about the System
Global Area (SGA)

s Oracle Database Administrator’s Guide for information about
managing the System Global Area (SGA)

If you dynamically disable SGA_TARGET by setting its value to 0 at instance startup,
Automatic Shared Memory Management will be disabled and the current auto-tuned
sizes will be used for each memory pool. If necessary, you can manually resize each
memory pool using the DB_CACHE_SIZE, SHARED POOL_SIZE, LARGE_POOL_SIZE, JAVA_
POOL_SIZE, and STREAMS_POOL_SIZE initialization parameters. See "Dynamically
Changing Cache Sizes" on page 7-3.

The following pools are manually sized components and are not affected by
Automatic Shared Memory Management:

= Log buffer
n Other buffer caches (such as KEEP, RECYCLE, and other nondefault block size)
s Fixed SGA and other internal allocations

To manually size these memory pools, you must set the DB_KEEP_CACHE_SIZE, DB_
RECYCLE_CACHE_SIZE, DB_nK_CACHE_SIZE, and LOG_BUFFER initialization parameters.
The memory allocated to these pools is deducted from the total available for SGA_
TARGET when Automatic Shared Memory Management computes the values of the
automatically tuned memory pools.

See Also:

s Oracle Database Administrator’s Guide for information about
managing initialization parameters

» Oracle Streams Replication Administrator’s Guide for information
about the STREAMS_POOL_SIZE initialization parameter

» Oracle Database Java Developer’s Guide for information about
Java memory usage

Dynamically Changing Cache Sizes

If the system is not using Automatic Memory Management or Automatic Shared
Memory Management, you can choose to dynamically reconfigure the sizes of the
shared pool, the large pool, the buffer cache, and the process-private memory. The
following sections contain details on sizing of caches:

s Configuring and Using the Buffer Cache

Configuring and Using Memory 7-3

Understanding Memory Allocation Issues

s Configuring and Using the Shared Pool and Large Pool
s Configuring and Using the Redo Log Buffer

The size of these memory caches is configurable using initialization configuration
parameters, such as DB_CACHE_SIZE, JAVA_POOL_SIZE, LARGE_POOL_SIZE, LOG_BUFFER,
and SHARED_POOL_SIZE. The values for these parameters are also dynamically
configurable using the ALTER SYSTEM statement except for the log buffer pool and
process-private memory, which are static after startup.

Memory for the shared pool, large pool, java pool, and buffer cache is allocated in
units of granules. The granule size is 4MB if the SGA size is less than 1GB. If the SGA
size is greater than 1GB, the granule size changes to 16MB. The granule size is
calculated and fixed when the instance starts up. The size does not change during the
lifetime of the instance.

The granule size that is currently being used for SGA can be viewed in the view
V$SGA_DYNAMIC_COMPONENTS. The same granule size is used for all dynamic
components in the SGA.

You can expand the total SGA size to a value equal to the SGA_MAX_SIZE parameter. If
the SGA_MAX_SIZE is not set, you can decrease the size of one cache and reallocate that
memory to another cache if necessary. SGA_MAX_SIZE defaults to the aggregate setting
of all the components.

Note: SGA_MAX_SIZE cannot be dynamically resized.

The maximum amount of memory usable by the instance is determined at instance
startup by the initialization parameter SGA_MAX_SIZE. You can specify SGA_MAX_SIZE to
be larger than the sum of all of the memory components, such as buffer cache and
shared pool. Otherwise, SGA_MAX_SIZE defaults to the actual size used by those
components. Setting SGA_MAX_SIZE larger than the sum of memory used by all of the
components lets you dynamically increase a cache size without needing to decrease
the size of another cache.

See Also: Your operating system's documentation for information
about managing dynamic SGA

Viewing Information About Dynamic Resize Operations
The following views provide information about dynamic resize operations:

= VSMEMORY_CURRENT RESIZE_OPS displays information about memory resize
operations (both automatic and manual) which are currently in progress.

= VSMEMORY_DYNAMIC_COMPONENTS displays information about the current sizes of all
dynamically tuned memory components, including the total sizes of the SGA and
instance PGA.

= VSMEMORY_RESIZE_OPS displays information about the last 800 completed memory
resize operations (both automatic and manual). This does not include in-progress
operations.

= V$MEMORY_TARGET_ADVICE displays tuning advice for the MEMORY_TARGET
initialization parameter.

= VS$SSGA_CURRENT RESIZE OPS displays information about SGA resize operations
that are currently in progress. An operation can be a grow or a shrink of a dynamic
SGA component.

7-4 Oracle Database Performance Tuning Guide

Understanding Memory Allocation Issues

= VS$SGA_RESIZE_OPS displays information about the last 800 completed SGA resize
operations. This does not include any operations currently in progress.

= VS$SGA_DYNAMIC_ COMPONENTS displays information about the dynamic components
in SGA. This view summarizes information based on all completed SGA resize
operations that occurred after startup.

= VS$SGA_DYNAMIC_ FREE_MEMORY displays information about the amount of SGA
memory available for future dynamic SGA resize operations.

See Also:

s Oracle Database Concepts for more information about dynamic
SGA

» Oracle Database Reference for detailed column information for
these views

Application Considerations

When configuring memory, size the cache appropriately for the application's needs.
Conversely, tuning the application's use of the caches can greatly reduce resource
requirements. Efficient use of Oracle Database memory caches also reduces the load on
related resources such as the latches, the CPU, and the I/O system.

For best performance, you should consider the following:

» The cache should be optimally designed to use the operating system and database
resources most efficiently.

= Memory allocations to Oracle Database memory structures should best reflect the
needs of the application.

Making changes or additions to an existing application might require resizing Oracle
Database memory structures to meet the needs of your modified application.

If your application uses Java, you should investigate whether you need to modify the
default configuration for the Java pool. See the Oracle Database Java Developer’s Guide
for information about Java memory usage.

Operating System Memory Use
For most operating systems, it is important to consider the following:
= Reduce Paging
» Fit the SGA into Main Memory
= Allow Adequate Memory to Individual Users

Reduce Paging

Paging occurs when an operating system transfers memory-resident pages to disk
solely to allow new pages to be loaded into memory. Many operating systems page to
accommodate large amounts of information that do not fit into real memory. On most
operating systems, paging reduces performance.

Use operating system utilities to examine the operating system, to identify whether
there is a lot of paging on your system. If so, then the total system memory may not be
large enough to hold everything for which you have allocated memory. Either increase
the total memory on your system, or decrease the amount of memory allocated.

Configuring and Using Memory 7-5

Configuring and Using the Buffer Cache

Fit the SGA into Main Memory

Because the purpose of the SGA is to store data in memory for fast access, the SGA
should be within main memory. If pages of the SGA are swapped to disk, then the data
is no longer quickly accessible. On most operating systems, the disadvantage of
paging significantly outweighs the advantage of a large SGA.

Note: You can use the LOCK_SGA parameter to lock the SGA into
physical memory and prevent it from being paged out. The
database does not use the MEMORY_TARGET and MEMORY_MAX_TARGET
parameters when the LOCK_SGA parameter is enabled.

To see how much memory is allocated to the SGA and each of its internal structures,
enter the following SQL*Plus statement:

SHOW SGA

The output of this statement will look similar to the following:

Total System Global Area 840205000 bytes

Fixed Size 279240 bytes
Variable Size 520093696 bytes
Database Buffers 318767104 bytes
Redo Buffers 1064960 bytes

Allow Adequate Memory to Individual Users

When sizing the SGA, ensure that you allow enough memory for the individual server
processes and any other programs running on the system.

See Also: Your operating system hardware and software
documentation, and the Oracle documentation specific to your
operating system, for more information on tuning operating system
memory usage

Iteration During Configuration

Configuring memory allocation involves distributing available memory to Oracle
Database memory structures, depending on the needs of the application. The
distribution of memory to Oracle Database structures can affect the amount of physical
I/0O necessary for Oracle Database t operate. Having a good first initial memory
configuration also provides an indication of whether the I/O system is effectively
configured.

It might be necessary to repeat the steps of memory allocation after the initial pass
through the process. Subsequent passes let you make adjustments in earlier steps,
based on changes in later steps. For example, decreasing the size of the buffer cache
lets you increase the size of another memory structure, such as the shared pool.

Configuring and Using the Buffer Cache

For many types of operations, Oracle Database uses the buffer cache to store blocks
read from disk. Oracle Database bypasses the buffer cache for particular operations,
such as sorting and parallel reads. For operations that use the buffer cache, this section
explains the following;:

= Using the Buffer Cache Effectively

7-6 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

= Sizing the Buffer Cache
s Interpreting and Using the Buffer Cache Advisory Statistics
s Considering Multiple Buffer Pools

Using the Buffer Cache Effectively

To use the buffer cache effectively, tune SQL statements for the application to avoid
unnecessary resource consumption. To meet this goal, verify that frequently executed
SQL statements and SQL statements that perform many buffer gets have been tuned.

When using parallel query, you can configure the database to use the database buffer
cache instead of performing direct reads into the PGA. This configuration may be
appropriate when the database servers have a large amount of memory.

See Also:
» Chapter 16, "SQL Tuning Overview"

» Oracle Database VLDB and Partitioning Guide to learn more using
parallel execution

Sizing the Buffer Cache

When configuring a new instance, it is impossible to know the correct size for the
buffer cache. Typically, a database administrator makes a first estimate for the cache
size, then runs a representative workload on the instance and examines the relevant
statistics to see whether the cache is under or over configured.

Buffer Cache Advisory Statistics

You can use several statistics to examine buffer cache activity, including the following:
= VS$DB_CACHE_ADVICE

m Buffer cache hit ratio

Using VS$DB_CACHE_ADVICE

This view is populated when the DB_CACHE_ADVICE initialization parameter is set to ON.
This view shows the simulated miss rates for a range of potential buffer cache sizes.

Each cache size simulated has its own row in this view, with the predicted physical
I/0 activity that would take place for that size. The DB_CACHE_ADVICE parameter is
dynamic, so the advisory can be enabled and disabled dynamically to allow you to
collect advisory data for a specific workload.

There is some overhead associated with this advisory. When the advisory is enabled,
there is a small increase in CPU usage, because additional bookkeeping is required.

Oracle Database uses DBA-based sampling to gather cache advisory statistics.
Sampling substantially reduces both CPU and memory overhead associated with
bookkeeping. Sampling is not used for a buffer pool if the number of buffers in that
buffer pool is small to begin with.

To use V$DB_CACHE_ADVICE, the parameter DB_CACHE_ADVICE should be set to ON, and a
representative workload should be running on the instance. Allow the workload to
stabilize before querying the V$DB_CACHE_ADVICE view.

The following SQL statement returns the predicted I/O requirement for the default
buffer pool for various cache sizes:

Configuring and Using Memory 7-7

Configuring and Using the Buffer Cache

COLUMN size_for_estimate FORMAT 999,999,999,999 heading 'Cache Size (MB)'
COLUMN buffers_for_ estimate FORMAT 999,999,999 heading 'Buffers'

COLUMN estd_physical_read_factor FORMAT 999.90 heading 'Estd Phys|Read Factor'
COLUMN estd_physical_reads FORMAT 999,999,999 heading 'Estd Phys| Reads'

SELECT size_for_estimate, buffers_for_estimate, estd physical_read_factor, estd_
physical_reads
FROM VSDB_CACHE_ADVICE
WHERE name = 'DEFAULT'
AND block_size = (SELECT value FROM VS$PARAMETER WHERE name = 'db_block_
size')
AND advice_status = 'ON';

The following output shows that if the cache was 212 MB, rather than the current size
of 304 MB, the estimated number of physical reads would increase by a factor of 1.74
or 74%. This means it would not be advisable to decrease the cache size to 212MB.

However, increasing the cache size to 334MB would potentially decrease reads by a
factor of .93 or 7%. If an additional 30MB memory is available on the host computer
and the SGA_MAX_SIZE setting allows the increment, it would be advisable to increase
the default buffer cache pool size to 334MB.

Estd Phys Estd Phys

Cache Size (MB) Buffers Read Factor Reads

30 3,802 18.70 192,317,943 10% of Current Size
60 7,604 12.83 131,949,536

91 11,406 7.38 75,865,861

121 15,208 4.97 51,111,658

152 19,010 3.64 37,460,786

182 22,812 2.50 25,668,196

212 26,614 1.74 17,850,847

243 30,416 1.33 13,720,149

273 34,218 1.13 11,583,180

304 38,020 1.00 10,282,475 Current Size
334 41,822 .93 9,515,878

364 45,624 .87 8,909,026

395 49,426 .83 8,495,039

424 53,228 .79 8,116,496

456 57,030 .76 7,824,764

486 60,832 .74 7,563,180

517 64,634 .71 7,311,729

547 68,436 .69 7,104,280

5717 72,238 .67 6,895,122

608 76,040 .66 6,739,731 200% of Current Size

This view assists in cache sizing by providing information that predicts the number of
physical reads for each potential cache size. The data also includes a physical read
factor, which is a factor by which the current number of physical reads is estimated to
change if the buffer cache is resized to a given value.

Note: With Oracle Database, physical reads do not necessarily
indicate disk reads; physical reads may well be satisfied from the
file system cache.

The relationship between successfully finding a block in the cache and the size of the
cache is not always a smooth distribution. When sizing the buffer pool, avoid the use
of additional buffers that contribute little or nothing to the cache hit ratio. In the

7-8 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

example illustrated in Figure 7-1 on page 7-9, only narrow bands of increments to the
cache size may be worthy of consideration.

Figure 7-1 Physical I/O and Buffer Cache Size

~0.5

Phys I/O Ratio

Buffers

Actual ..___.___.___

INTUITIVE —

Examining Figure 7-1 leads to the following observations:

s The benefit from increasing buffers from point A to point B is considerably higher
than from point B to point C.

s The decrease in the physical I/O between points A and B and points B and C is
not smooth, as indicated by the dotted line in the graph.

Calculating the Buffer Cache Hit Ratio

The buffer cache hit ratio calculates how often a requested block has been found in the
buffer cache without requiring disk access. This ratio is computed using data selected

from the dynamic performance view V$SYSSTAT. You can use the buffer cache hit ratio
to verify the physical 1/O as predicted by V$DB_CACHE_ADVICE.

The statistics in Table 7-1 are used to calculate the hit ratio.

Table 7-1 Statistics for Calculating the Hit Ratio

Statistic Description

consistent gets from cache Number of times a consistent read was requested for a
block from the buffer cache.

db block gets from cache Number of times a CURRENT block was requested from
the buffer cache.

physical reads cache Total number of data blocks read from disk into buffer
cache.

Example 7-1 has been simplified by using values selected directly from the V$SYSSTAT
table, rather than over an interval. It is best to calculate the delta of these statistics over
an interval while your application is running, then use them to determine the hit ratio.

See Also: Chapter 6, "Automatic Performance Diagnostics" for
more information on collecting statistics over an interval

Configuring and Using Memory 7-9

Configuring and Using the Buffer Cache

Example 7-1 Calculating the Buffer Cache Hit Ratio
SELECT NAME, VALUE
FROM VSSYSSTAT
WHERE NAME IN ('db block gets from cache', 'consistent gets from cache', 'physical
reads cache');

Using the values in the output of the query, calculate the hit ratio for the buffer cache
with the following formula:

1 - (('physical reads cache') / ('consistent gets from cache' + 'db block gets
from cache'))

See Also: Oracle Database Reference for information about the
V$SYSSTAT view

Interpreting and Using the Buffer Cache Advisory Statistics

There are many factors to examine before considering whether to increase or decrease
the buffer cache size. For example, you should examine V$DB_CACHE_ADVICE data and
the buffer cache hit ratio.

A low cache hit ratio does not imply that increasing the size of the cache would be
beneficial for performance. A good cache hit ratio could wrongly indicate that the
cache is adequately sized for the workload.

To interpret the buffer cache hit ratio, you should consider the following:

= Repeated scanning of the same large table or index can artificially inflate a poor
cache hit ratio. Examine frequently executed SQL statements with a large number
of buffer gets, to ensure that the execution plan for such SQL statements is
optimal. If possible, avoid repeated scanning of frequently accessed data by
performing all of the processing in a single pass or by optimizing the SQL
statement.

» If possible, avoid requerying the same data, by caching frequently accessed data in
the client program or middle tier.

= Database blocks accessed during a long full table scan are put on the tail end of the
least recently used LRU list and not on the head of the list. Therefore, the blocks
are aged out faster than blocks read when performing indexed lookups or small
table scans. When interpreting the buffer cache data, poor hit ratios when valid
large full table scans are occurring should also be considered.

Note: Short table scans are scans performed on tables under a
certain size threshold. The definition of a small table is the
maximum of 2% of the buffer cache and 20, whichever is bigger.

= Inany large database running OLTP applications in any given unit of time, most
rows are accessed either one or zero times. On this basis, there might be little
purpose in keeping the block in memory for very long following its use.

= A common mistake is to continue increasing the buffer cache size. Such increases
have no effect if you are doing full table scans or operations that do not use the
buffer cache.

7-10 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

Increasing Memory Allocated to the Buffer Cache

As a general rule, investigate increasing the size of the cache if the cache hit ratio is
low and your application has been tuned to avoid performing full table scans.

To increase cache size, first set the DB_CACHE_ADVICE initialization parameter to ON, and
let the cache statistics stabilize. Examine the advisory data in the V$DB_CACHE_ADVICE
view to determine the next increment required to significantly decrease the amount of
physical I/O performed. If it is possible to allocate the required extra memory to the
buffer cache without causing the host operating system to page, then allocate this
memory. To increase the amount of memory allocated to the buffer cache, increase the
value of the DB_CACHE_SIZE initialization parameter.

If required, resize the buffer pools dynamically, rather than shutting down the instance
to perform this change.

Note: When the cache is resized significantly (greater than 20%),
the old cache advisory value is discarded and the cache advisory is
set to the new size. Otherwise, the old cache advisory value is
adjusted to the new size by the interpolation of existing values.

The DB_CACHE_SIZE parameter specifies the size of the default cache for the database's
standard block size. To create and use tablespaces with block sizes different than the
database's standard block sizes (such as to support transportable tablespaces), you
must configure a separate cache for each block size used. You can use the DB_nK_
CACHE_SIZE parameter to configure the nonstandard block size needed (where nis 2, 4,
8,16 or 32 and n is not the standard block size).

Note: The process of choosing a cache size is the same, regardless
of whether the cache is the default standard block size cache, the
KEEP or RECYCLE cache, or a nonstandard block size cache.

See Also: Oracle Database Reference and Oracle Database
Administrator’s Guide for more information on using the DB_nK_
CACHE_SIZE parameters

Reducing Memory Allocated to the Buffer Cache

If the cache hit ratio is high, then the cache is probably large enough to hold the most
frequently accessed data. Check V$DB_CACHE_ADVICE data to see whether decreasing
the cache size significantly causes the number of physical I/Os to increase. If not, and
if you require memory for another memory structure, then you might be able to reduce
the cache size and still maintain good performance. To make the buffer cache smaller,
reduce the size of the cache by changing the value for the parameter DB_CACHE_SIZE.

Considering Multiple Buffer Pools

A single default buffer pool is generally adequate for most systems. However, users
with detailed knowledge of an application's buffer pool might benefit from
configuring multiple buffer pools.

With segments that have atypical access patterns, store blocks from those segments in
two different buffer pools: the KEEP pool and the RECYCLE pool. A segment's access
pattern may be atypical if it is constantly accessed (that is, hot) or infrequently
accessed (for example, a large segment accessed by a batch job only once a day).

Configuring and Using Memory 7-11

Configuring and Using the Buffer Cache

Multiple buffer pools let you address these differences. You can use a KEEP buffer pool
to maintain frequently accessed segments in the buffer cache, and a RECYCLE buffer
pool to prevent objects from consuming unnecessary space in the cache. When an
object is associated with a cache, all blocks from that object are placed in that cache.
Oracle Database maintains a DEFAULT buffer pool for objects that have not been
assigned to a specific buffer pool. The default buffer pool is of size DB_CACHE_SIZE.
Each buffer pool uses the same Least Recently Used (LRU) replacement policy (for
example, if the KEEP pool is not large enough to store all of the segments allocated to it,
then the oldest blocks age out of the cache).

By allocating objects to appropriate buffer pools, you can:
= Reduce or eliminate I/Os

= Isolate or limit an object to a separate cache

Random Access to Large Segments

A problem can occur with an LRU aging method when a very large segment is
accessed with a large or unbounded index range scan. Here, very large means large
compared to the size of the cache. Any single segment that accounts for a substantial
portion (more than 10%) of nonsequential physical reads can be considered very large.
Random reads to a large segment can cause buffers that contain data for other
segments to be aged out of the cache. The large segment ends up consuming a large
percentage of the cache, but it does not benefit from the cache.

Very frequently accessed segments are not affected by large segment reads because
their buffers are warmed frequently enough that they do not age out of the cache.
However, the problem affects warm segments that are not accessed frequently enough
to survive the buffer aging caused by the large segment reads. There are three options
for solving this problem:

1. If the object accessed is an index, find out whether the index is selective. If not,
tune the SQL statement to use a more selective index.

2, If the SQL statement is tuned, you can move the large segment into a separate
RECYCLE cache so that it does not affect the other segments. The RECYCLE cache
should be smaller than the DEFAULT buffer pool, and it should reuse buffers more
quickly than the DEFAULT buffer pool.

3. Alternatively, you can move the small warm segments into a separate KEEP cache
that is not used at all for large segments. The KEEP cache can be sized to minimize
misses in the cache. You can make the response times for specific queries more
predictable by putting the segments accessed by the queries in the KEEP cache to
ensure that they do not age out.

Oracle Real Application Clusters Instances

You can create multiple buffer pools for each database instance. The same set of buffer
pools need not be defined for each instance of the database. Among instances, the
buffer pools can be different sizes or not defined at all. Tune each instance according to
the application requirements for that instance.

Using Multiple Buffer Pools

To define a default buffer pool for an object, use the BUFFER_POOL keyword of the
STORAGE clause. This clause is valid for CREATE and ALTER TABLE, CLUSTER, and INDEX
SQL statements. After a buffer pool has been specified, all subsequent blocks read for
the object are placed in that pool.

7-12 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

If a buffer pool is defined for a partitioned table or index, then each partition of the
object inherits the buffer pool from the table or index definition, unless you override it
with a specific buffer pool.

When the buffer pool of an object is changed using the ALTER statement, all buffers
currently containing blocks of the altered segment remain in the buffer pool they were
in before the ALTER statement. Newly loaded blocks and any blocks that have aged out
and are reloaded go into the new buffer pool.

See Also: Oracle Database SQL Language Reference for information
about specifying BUFFER_POOL in the STORAGE clause

Buffer Pool Data in V$DB_CACHE_ADVICE

You can use V$DB_CACHE_ADVICE to size all pools configured on a database instance.
Make the initial cache size estimate, run the representative workload, then simply
query the V$DB_CACHE_ADVICE view for the pool you want to use.

For example, to query data from the KEEP pool:

SELECT SIZE_FOR_ESTIMATE, BUFFERS_FOR_ESTIMATE, ESTD_PHYSICAL_READ_ FACTOR, ESTD_
PHYSICAL_READS
FROM VS$SDB_CACHE_ADVICE
WHERE NAME = 'KEEP'
AND BLOCK_SIZE = (SELECT VALUE FROM VSPARAMETER WHERE NAME = 'db_block_
size')
AND ADVICE_STATUS = 'ON';

Buffer Pool Hit Ratios

The data in V$SYSSTAT reflects the logical and physical reads for all buffer pools within
one set of statistics. To determine the hit ratio for the buffer pools individually, query
the V$BUFFER_POOL_STATISTICS view. This view maintains statistics for each pool on
the number of logical reads and writes.

The buffer pool hit ratio can be determined using the following formula:

1 - (physical_reads/(db_block_gets + consistent_gets))

The ratio can be calculated with the following query:

SELECT NAME, PHYSICAL_READS, DB_BLOCK_GETS, CONSISTENT_ GETS,
1 - (PHYSICAL_READS / (DB_BLOCK_GETS + CONSISTENT_GETS)) "Hit Ratio"
FROM VS$BUFFER_POOL_STATISTICS;

See Also: Oracle Database Reference for information about the
VSBUFFER_POOL_STATISTICS view

Determining Which Segments Have Many Buffers in the Pool

The V$BH view shows the data object ID of all blocks that currently reside in the SGA.
To determine which segments have many buffers in the pool, you can use one of the
two methods described in this section. You can either look at the buffer cache usage

pattern for all segments (Method 1) or examine the usage pattern of a specific segment,
(Method 2).

Configuring and Using Memory 7-13

Configuring and Using the Buffer Cache

Method 1

The following query counts the number of blocks for all segments that reside in the
buffer cache at that point in time. Depending on buffer cache size, this might require a
lot of sort space.

COLUMN OBJECT_NAME FORMAT A40
COLUMN NUMBER_OF_BLOCKS FORMAT 999,999,999,999

SELECT o.OBJECT_NAME, COUNT (*) NUMBER_OF_BLOCKS
FROM DBA_OBJECTS o, V$BH bh
WHERE o.DATA_OBJECT_ID = bh.OBJD
AND o.OWNER != 'SYys'
GROUP BY o0.0OBJECT_NAME
ORDER BY COUNT (*) ;

OBJECT_NAME NUMBER_OF_BLOCKS
OA_PREF_UNIQ KEY 1
SYS_C002651 1
DS_PERSON 78
OM_EXT_HEADER 701
OM_SHELL 1,765
OM_HEADER 5,826
OM_INSTANCE 12,644
Method 2

Use the following steps to determine the percentage of the cache used by an individual
object at a given point in time:

1. Find the Oracle Database internal object number of the segment by entering the
following query:

SELECT DATA_OBJECT_ID, OBJECT_TYPE
FROM DBA_OBJECTS
WHERE OBJECT_NAME = UPPER ('segment_name') ;

Because two objects can have the same name (if they are different types of objects),
use the OBJECT_TYPE column to identify the object of interest.
2. Find the number of buffers in the buffer cache for SEGMENT_NAME:

SELECT COUNT(*) BUFFERS
FROM V$BH
WHERE OBJD = data_object_id value;

where data_object_id_valueis from step 1.

3. Find the number of buffers in the instance:

SELECT NAME, BLOCK_SIZE, SUM(BUFFERS)
FROM VSBUFFER_POOL

GROUP BY NAME, BLOCK_SIZE

HAVING SUM(BUFFERS) 0;

4. Calculate the ratio of buffers to total buffers to obtain the percentage of the cache
currently used by SEGMENT_NAME:

o)

% cache used by segment_name = [buffers(Step2)/total buffers(Step3)]

7-14 Oracle Database Performance Tuning Guide

Configuring and Using the Buffer Cache

KEEP Pool

Note: This technique works only for a single segment. You must
run the query for each partition for a partitioned object.

If there are certain segments in your application that are referenced frequently, then
store the blocks from those segments in a separate cache called the KEEP buffer pool.
Memory is allocated to the KEEP buffer pool by setting the parameter DB_KEEP_CACHE_
SIZE to the required size. The memory for the KEEP pool is not a subset of the default
pool. Typical segments that can be kept are small reference tables that are used
frequently. Application developers and DBAs can determine which tables are
candidates.

You can check the number of blocks from candidate tables by querying V$BH, as
described in "Determining Which Segments Have Many Buffers in the Pool" on
page 7-13.

Note: The NOCACHE clause has no effect on a table in the KEEP
cache.

The goal of the KEEP buffer pool is to retain objects in memory, thus avoiding I/O
operations. The size of the KEEP buffer pool, therefore, depends on the objects to be
kept in the buffer cache. You can compute an approximate size for the XKEEP buffer pool
by adding the blocks used by all objects assigned to this pool. If you gather statistics
on the segments, you can query DBA_TABLES.BLOCKS and DBA_TABLES.EMPTY_BLOCKS to
determine the number of blocks used.

Calculate the hit ratio by taking two snapshots of system performance at different
times, using the previous query. Subtract the more recent values for physical reads,
block gets, and consistent gets from the older values, and use the results to
compute the hit ratio.

A buffer pool hit ratio of 100% might not be optimal. Often, you can decrease the size
of your KEEP buffer pool and still maintain a sufficiently high hit ratio. Allocate blocks
removed from the KEEP buffer pool to other buffer pools.

Note: If an object grows in size, then it might no longer fit in the
KEEP buffer pool. You will begin to lose blocks out of the cache.

Each object kept in memory results in a trade-off. It is beneficial to keep
frequently-accessed blocks in the cache, but retaining infrequently-used blocks results
in less space for other, more active blocks.

RECYCLE Pool

It is possible to configure a RECYCLE buffer pool for blocks belonging to those segments
that you do not want to remain in memory. The RECYCLE pool is good for segments
that are scanned rarely or are not referenced frequently. If an application accesses the
blocks of a very large object in a random fashion, then there is little chance of reusing a
block stored in the buffer pool before it is aged out. This is true regardless of the size of
the buffer pool (given the constraint of the amount of available physical memory).
Consequently, the object's blocks need not be cached; those cache buffers can be
allocated to other objects.

Configuring and Using Memory 7-15

Configuring and Using the Shared Pool and Large Pool

Memory is allocated to the RECYCLE buffer pool by setting the parameter DB_RECYCLE_
CACHE_SIZE to the required size. This memory for the RECYCLE buffer pool is not a
subset of the default pool.

Do not discard blocks from memory too quickly. If the buffer pool is too small, then
blocks can age out of the cache before the transaction or SQL statement has completed
execution. For example, an application might select a value from a table, use the value
to process some data, and then update the record. If the block is removed from the
cache after the SELECT statement, then it must be read from disk again to perform the
update. The block should be retained for the duration of the user transaction.

Configuring and Using the Shared Pool and Large Pool

Oracle Database uses the shared pool to cache many different types of data. Cached
data includes the textual and executable forms of PL/SQL blocks and SQL statements,
dictionary cache data, result cache data, and other data.

Proper use and sizing of the shared pool can reduce resource consumption in at least
four ways:

= Parse overhead is avoided if the SQL statement is in the shared pool. This saves
CPU resources on the host and elapsed time for the end user.

= Latching resource usage is significantly reduced, which results in greater
scalability.

= Shared pool memory requirements are reduced, because all applications use the
same pool of SQL statements and dictionary resources.

» I/Oresources are saved, because dictionary elements that are in the shared pool
do not require disk access.

This section covers the following:

= Shared Pool Concepts

= Using the Shared Pool Effectively

= Sizing the Shared Pool

» Interpreting Shared Pool Statistics

= Using the Large Pool

s Using CURSOR_SPACE_FOR_TIME

= Caching Session Cursors

s Configuring the Reserved Pool

s Keeping Large Objects to Prevent Aging
s Sharing Cursors for Existing Applications

= Maintaining Connections

Note: The server result cache is an optional cache of query and
function results within the shared pool. Information related to result
caching is consolidated in "Managing the Server and Client Result
Caches" on page 7-53.

7-16 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Shared Pool Concepts

The main components of the shared pool are the library cache, the dictionary cache,
and, depending on your configuration, the server result cache. The library cache stores
the executable (parsed or compiled) form of recently referenced SQL and PL/SQL
code. The dictionary cache stores data referenced from the data dictionary. The server
result cache stores the results of queries and PL/SQL function results.

Many of the caches in the shared pool automatically increase or decrease in size, as
needed, including the library cache and the dictionary cache. Old entries are aged out
to accommodate new entries when the shared pool does not have free space.

A cache miss on the data dictionary cache or library cache is more expensive than a
miss on the buffer cache. For this reason, the shared pool should be sized to ensure
that frequently used data is cached.

Several features make large memory allocations in the shared pool: for example, the
shared server, parallel query, or Recovery Manager. Oracle recommends segregating
the SGA memory used by these features by configuring a distinct memory area, called
the large pool.

Allocation of memory from the shared pool is performed in chunks. This chunking
enables large objects (over 5 KB) to be loaded into the cache without requiring a single
contiguous area. In this way, the database reduces the possibility of running out of
enough contiguous memory due to fragmentation.

Infrequently, Java, PL/SQL, or SQL cursors may make allocations out of the shared
pool that are larger than 5 KB. To allow these allocations to occur most efficiently,
Oracle Database segregates a small amount of the shared pool. This memory is used if
the shared pool does not have enough space. The segregated area of the shared pool is
called the reserved pool.

See Also:

s "Configuring the Reserved Pool" on page 7-33 for more
information on the reserved area of the shared pool

= "Using the Large Pool" on page 7-28 for more information on
configuring the large pool

Dictionary Cache Concepts

Information stored in the data dictionary cache includes usernames, segment
information, profile data, tablespace information, and sequence numbers. The
dictionary cache also stores descriptive information, or metadata, about schema
objects. Oracle Database uses this metadata when parsing SQL cursors or during the
compilation of PL/SQL programs.

Library Cache Concepts

The library cache holds executable forms of SQL cursors, PL/SQL programs, and Java
classes. This section focuses on tuning as it relates to cursors, PL/SQL programs, and
Java classes. These are collectively referred to as application code.

When application code is run, Oracle Database attempts to reuse existing code if it has
been executed previously and can be shared. If the parsed representation of the
statement does exist in the library cache and it can be shared, then the database reuses
the existing code. This is known as a soft parse, or a library cache hit. If Oracle
Database cannot use existing code, then the database must build a new executable
version of the application code. This is known as a hard parse, or a library cache miss.
See "SQL Sharing Criteria"” on page 7-18 for details on when a SQL and PL/SQL

Configuring and Using Memory 7-17

Configuring and Using the Shared Pool and Large Pool

statements can be shared.

Library cache misses can occur on either the parse step or the execute step when
processing a SQL statement. When an application makes a parse call for a SQL
statement, if the parsed representation of the statement does not exist in the library
cache, then Oracle Database parses the statement and stores the parsed form in the
shared pool. This is a hard parse. You might be able to reduce library cache misses on
parse calls by ensuring that all sharable SQL statements are in the shared pool
whenever possible.

If an application makes an execute call for a SQL statement, and if the executable
portion of the previously built SQL statement has been aged out (that is, deallocated)
from the library cache to make room for another statement, then Oracle Database
implicitly reparses the statement, creating a new shared SQL area for it, and executes
it. This also results in a hard parse. Usually, you can reduce library cache misses on
execution calls by allocating more memory to the library cache.

In order to perform a hard parse, Oracle Database uses more resources than during a
soft parse. Resources used for a soft parse include CPU and library cache latch gets.
Resources required for a hard parse include additional CPU, library cache latch gets,
and shared pool latch gets. See "SQL Execution Efficiency" on page 2-13 for a
discussion of hard and soft parsing.

SQL Sharing Criteria

Oracle Database automatically determines whether a SQL statement or PL/SQL block
being issued is identical to another statement currently in the shared pool.

Oracle Database performs the following steps to compare the text of the SQL statement
to existing SQL statements in the shared pool:

1. The text of the statement is hashed. If there is no matching hash value, then the
SQL statement does not currently exist in the shared pool, and a hard parse is
performed.

2. If there is a matching hash value for an existing SQL statement in the shared pool,
then Oracle Database compares the text of the matched statement to the text of the
statement hashed to see if they are identical. The text of the SQL statements or
PL/SQL blocks must be identical, character for character, including spaces, case,
and comments. For example, the following statements cannot use the same shared
SQL area:

SELECT * FROM employees;
SELECT * FROM Employees;
SELECT * FROM employees;

Usually, SQL statements that differ only in literals cannot use the same shared SQL
area. For example, the following statements do not resolve to the same SQL area:

SELECT count (1) FROM employees WHERE manager_id = 121;
SELECT count (1) FROM employees WHERE manager_id = 247;

The only exception to this rule is when the parameter CURSOR_SHARING has been set
to FORCE. Similar statements can share SQL areas when the CURSOR_SHARING is set
to FORCE. The costs and benefits involved in using CURSOR_SHARING are explained
in "When to Set CURSOR_SHARING to a Nondefault Value" on page 7-37.

See Also: Oracle Database Reference for more information on the
CURSOR_SHARING initialization parameter

7-18 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

3. The objects referenced in the issued statement are compared to the referenced
objects of all existing statements in the shared pool to ensure that they are
identical.

References to schema objects in the SQL statements or PL/SQL blocks must
resolve to the same object in the same schema. For example, if two users each issue
the following SQL statement and they each have their own employees table, then
this statement is not considered identical, because the statement references
different tables for each user:

SELECT * FROM employees;

4. Bind variables in the SQL statements must match in name, data type, and length.

For example, the following statements cannot use the same shared SQL area,
because the bind variable names differ:

SELECT * FROM employees WHERE department_id = :department_id;
SELECT * FROM employees WHERE department_id = :dept_id;

Many Oracle products, such as Oracle Forms and the precompilers, convert the
SQL before passing statements to the database. Characters are uniformly changed
to uppercase, white space is compressed, and bind variables are renamed so that a
consistent set of SQL statements is produced.

5. The session's environment must be identical. For example, SQL statements must
be optimized using the same optimization goal.

Using the Shared Pool Effectively

An important purpose of the shared pool is to cache the executable versions of SQL
and PL/SQL statements. This allows multiple executions of the same SQL or PL/SQL
code to be performed without the resources required for a hard parse, which results in
significant reductions in CPU, memory, and latch usage.

The shared pool is also able to support unshared SQL in data warehousing
applications, which execute low-concurrency, high-resource SQL statements. In this
situation, using unshared SQL with literal values is recommended. Using literal values
rather than bind variables allows the optimizer to make good column selectivity
estimates, thus providing an optimal data access plan.

In an OLTP system, there are several ways to ensure efficient use of the shared pool
and related resources. Discuss the following items with application developers and
agree on strategies to ensure that the shared pool is used effectively:

= Shared Cursors

= Single-User Logon and Qualified Table Reference
s Useof PL/SQL

= Avoid Performing DDL

s Cache Sequence Numbers

» Cursor Access and Management

Efficient use of the shared pool in high-concurrency OLTP systems significantly
reduces the probability of parse-related application scalability issues.

See Also: Oracle Database Data Warehousing Guide

Configuring and Using Memory 7-19

Configuring and Using the Shared Pool and Large Pool

Shared Cursors

Reuse of shared SQL for multiple users running the same application, avoids hard
parsing. Soft parses provide a significant reduction in the use of resources such as the
shared pool and library cache latches. To share cursors, do the following:

= Use bind variables rather than literals in SQL statements whenever possible. For
example, the following two statements cannot use the same shared area because
they do not match character for character:

SELECT employee_id FROM employees WHERE department_id 10;
SELECT employee_id FROM employees WHERE department_id = 20;

By replacing the literals with a bind variable, only one SQL statement would
result, which could be executed twice:

SELECT employee_id FROM employees WHERE department_id = :dept_id;

Note: For existing applications where rewriting the code to use
bind variables is impractical, you can use the CURSOR_SHARING
initialization parameter to avoid some of the hard parse overhead.
See "Sharing Cursors for Existing Applications" on page 7-36.

= Avoid application designs that result in large numbers of users issuing dynamic,
unshared SQL statements. Typically, the majority of data required by most users
can be satisfied using preset queries. Use dynamic SQL where such functionality is
required.

= Ensure that users of the application do not change the optimization approach and
goal for their individual sessions.

= Establish the following policies for application developers:

- Standardize naming conventions for bind variables and spacing conventions
for SQL statements and PL/SQL blocks.

— Consider using stored procedures whenever possible. Multiple users issuing
the same stored procedure use the same shared PL/SQL area automatically.
Because stored procedures are stored in a parsed form, their use reduces
run-time parsing.

= For SQL statements which are identical but are not being shared, you can query
V$SQL_SHARED_CURSOR to determine why the cursors are not shared. This would
include optimizer settings and bind variable mismatches.

Single-User Logon and Qualified Table Reference

Large OLTP systems where users log in to the database as their own user ID can
benefit from explicitly qualifying the segment owner, rather than using public
synonyms. This significantly reduces the number of entries in the dictionary cache. For
example:

SELECT employee_id FROM hr.employees WHERE department_id = :dept_id;
An alternative to qualifying table names is to connect to the database through a single
user ID, rather than individual user IDs. User-level validation can take place locally on

the middle tier. Reducing the number of distinct userIDs also reduces the load on the
dictionary cache.

7-20 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Use of PL/SQL

Using stored PL/SQL packages can overcome many of the scalability issues for
systems with thousands of users, each with individual user sign-on and public
synonyms. This is because a package is executed as the owner, rather than the caller,
which reduces the dictionary cache load considerably.

Note: Oracle encourages the use of definer's rights packages to
overcome scalability issues. The benefits of reduced dictionary
cache load are not as obvious with invoker's rights packages.

Avoid Performing DDL

Avoid performing DDL operations on high-usage segments during peak hours.
Performing DDL on such segments often results in the dependent SQL being
invalidated and hence reparsed on a later execution.

Cache Sequence Numbers

Allocating sufficient cache space for frequently updated sequence numbers
significantly reduces the frequency of dictionary cache locks, which improves
scalability. The CACHE keyword on the CREATE SEQUENCE or ALTER SEQUENCE statement
lets you configure the number of cached entries for each sequence.

See Also: Oracle Database SQL Language Reference for details on
the CREATE SEQUENCE and ALTER SEQUENCE statements

Cursor Access and Management

Depending on the application tool that you are using, you can control how frequently
your application performs parse calls.

The frequency with which your application either closes cursors or reuses existing
cursors for new SQL statements affects the amount of memory used by a session and
often the amount of parsing performed by that session.

An application that closes cursors or reuses cursors (for a different SQL statement),
does not need as much session memory as an application that keeps cursors open.
Conversely, that same application may need to perform more parse calls, using extra
CPU and Oracle Database resources.

Cursors associated with SQL statements that are not executed frequently can be closed
or reused for other statements, because the likelihood of reexecuting (and reparsing)
that statement is low.

Extra parse calls are required when a cursor containing a SQL statement that will be
reexecuted is closed or reused for another statement. Had the cursor remained open, it
could have been reused without the overhead of issuing a parse call.

The ways in which you control cursor management depends on your application
development tool. The following sections introduce the methods used for some Oracle
Database t.

See Also:

= The tool-specific documentation for more information about
each tool

» Oracle Database Concepts for more information on cursors
shared SQL

Configuring and Using Memory 7-21

Configuring and Using the Shared Pool and Large Pool

Reducing Parse Calls with OCI When using Oracle Call Interface (OCI), do not close and
reopen cursors that you will be reexecuting. Instead, leave the cursors open, and
change the literal values in the bind variables before execution.

Avoid reusing statement handles for new SQL statements when the existing SQL

statement will be reexecuted in the future.

Reducing Parse Calls with the Oracle Precompilers When using the Oracle precompilers,
you can control when cursors are closed by setting precompiler clauses. In Oracle
mode, the clauses are as follows:

s HOLD_CURSOR = YES

= RELEASE_CURSOR = NO

s MAXOPENCURSORS = desired_value

Oracle Database recommends that you not use ANSI mode, in which the values of
HOLD_CURSOR and RELEASE_CURSOR are switched.

The precompiler clauses can be specified on the precompiler command line or within
the precompiler program. With these clauses, you can employ different strategies for
managing cursors during execution of the program.

See Also: Your language's precompiler manual for more
information on these clauses

Reducing Parse Calls with SQLJ Prepare the statement, then reexecute the statement with
the new values for the bind variables. The cursor stays open for the duration of the
session.

Reducing Parse Calls with JDBC Avoid closing cursors if they will be reexecuted, because
the new literal values can be bound to the cursor for reexecution. Alternatively, JDBC
provides a SQL statement cache within the JDBC client using the setStmtCacheSize ()
method. Using this method, JDBC creates a SQL statement cache that is local to the
JDBC program.

See Also: Oracle Database JDBC Developer’s Guide for more
information on using the JDBC SQL statement cache

Reducing Parse Calls with Oracle Forms With Oracle Forms, it is possible to control some
aspects of cursor management. You can exercise this control either at the trigger level,
at the form level, or at run time.

Sizing the Shared Pool

When configuring a brand new instance, it is impossible to know the correct size to
make the shared pool cache. Typically, a DBA makes a first estimate for the cache size,
then runs a representative workload on the instance, and examines the relevant
statistics to see whether the cache is under-configured or over-configured.

For most OLTP applications, shared pool size is an important factor in application
performance. Shared pool size is less important for applications that issue a very
limited number of discrete SQL statements, such as decision support systems (DSS).

If the shared pool is too small, then extra resources are used to manage the limited
amount of available space. This consumes CPU and latching resources, and causes
contention. Optimally, the shared pool should be just large enough to cache frequently
accessed objects. Having a significant amount of free memory in the shared pool is a

7-22 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

waste of memory. When examining the statistics after the database has been running, a
DBA should check that none of these mistakes are in the workload.

Shared Pool: Library Cache Statistics

When sizing the shared pool, the goal is to ensure that SQL statements that will be
executed multiple times are cached in the library cache, without allocating too much
memory.

The statistic that shows the amount of reloading (that is, reparsing) of a previously
cached SQL statement that was aged out of the cache is the RELOADS column in the
VSLIBRARYCACHE view. In an application that reuses SQL effectively, on a system with
an optimal shared pool size, the RELOADS statistic will have a value near zero.

The INVALIDATIONS column in VSLIBRARYCACHE view shows the number of times
library cache data was invalidated and had to be reparsed. INVALIDATIONS should be
near zero. This means SQL statements that could have been shared were invalidated
by some operation (for example, a DDL). This statistic should be near zero on OLTP
systems during peak loads.

Another key statistic is the amount of free memory in the shared pool at peak times.
The amount of free memory can be queried from V$SGASTAT, looking at the free
memory for the shared pool. Optimally, free memory should be as low as possible,
without causing any reloads on the system.

Lastly, a broad indicator of library cache health is the library cache hit ratio. This value
should be considered along with the other statistics discussed in this section and other
data, such as the rate of hard parsing and whether there is any shared pool or library
cache latch contention.

These statistics are discussed in more detail in the following section.

VSLIBRARYCACHE

You can monitor statistics reflecting library cache activity by examining the dynamic
performance view V$LIBRARYCACHE. These statistics reflect all library cache activity
after the most recent instance startup.

Each row in this view contains statistics for one type of item kept in the library cache.
The item described by each row is identified by the value of the NAMESPACE column.
Rows with the following NAMESPACE values reflect library cache activity for SQL
statements and PL/SQL blocks:

= SQL AREA

= TABLE/PROCEDURE
= BODY

= TRIGGER

Rows with other NAMESPACE values reflect library cache activity for object definitions
that Oracle Database uses for dependency maintenance.

See Also: Oracle Database Reference for information about the
dynamic performance VSLIBRARYCACHE view

To examine each namespace individually, use the following query:

SELECT NAMESPACE, PINS, PINHITS, RELOADS, INVALIDATIONS
FROM VSLIBRARYCACHE
ORDER BY NAMESPACE;

Configuring and Using Memory 7-23

Configuring and Using the Shared Pool and Large Pool

The output of this query could look like the following;:

NAMESPACE PINS PINHITS RELOADS INVALIDATIONS
BODY 8870 8819 0 0
CLUSTER 393 380 0 0
INDEX 29 0 0 0
OBJECT 0 0 0 0
PIPE 55265 55263 0 0
SQL AREA 21536413 21520516 11204 2
TABLE/PROCEDURE 10775684 10774401 0 0
TRIGGER 1852 1844 0 0

To calculate the library cache hit ratio, use the following formula:

Library Cache Hit Ratio = sum(pinhits) / sum(pins)

Using the library cache hit ratio formula, the cache hit ratio is the following;:

SUM (PINHITS) /SUM(PINS)

.999466248

Note: These queries return data from instance startup, rather than
statistics gathered during an interval; interval statistics can better
identify the problem.

See Also: Chapter 6, "Automatic Performance Diagnostics" to
learn how to gather information over an interval

Examining the returned data leads to the following observations:
= For the SQL AREA namespace, there were 21,536,413 executions.

= 11,204 of the executions resulted in a library cache miss, requiring Oracle Database
t implicitly reparse a statement or block or reload an object definition because it
aged out of the library cache (that is, a RELOAD).

= SQL statements were invalidated two times, again causing library cache misses.

= The hit percentage is about 99.94%. This means that only .06% of executions
resulted in reparsing.

The amount of free memory in the shared pool is reported in V$SGASTAT. Report the
current value from this view using the following query:

SELECT * FROM V$SGASTAT
WHERE NAME = 'free memory'
AND POOL = 'shared pool';

The output will be similar to the following:

shared pool free memory 4928280

If free memory is always available in the shared pool, then increasing the size of the
pool offers little or no benefit. However, just because the shared pool is full does not
necessarily mean there is a problem. It may be indicative of a well-configured system.

7-24 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Shared Pool Advisory Statistics

The amount of memory available for the library cache can drastically affect the parse
rate of an Oracle database instance. The shared pool advisory statistics provide a
database administrator with information about library cache memory, allowing a DBA
to predict how changes in the size of the shared pool can affect aging out of objects in
the shared pool.

The shared pool advisory statistics track the library cache's use of shared pool memory
and predict how the library cache will behave in shared pools of different sizes. Two
fixed views provide the information to determine how much memory the library cache
is using, how much is currently pinned, how much is on the shared pool's LRU list,
and how much time might be lost or gained by changing the size of the shared pool.

The following views of the shared pool advisory statistics are available. These views
display any data when shared pool advisory is on. These statistics reset when the
advisory is turned off.

VS$SHARED_POOL_ADVICE This view displays information about estimated parse time
in the shared pool for different pool sizes. The sizes range from 10% of the current
shared pool size or the amount of pinned library cache memory, whichever is higher,
to 200% of the current shared pool size, in equal intervals. The value of the interval
depends on the current size of the shared pool.

VSLIBRARY_CACHE_MEMORY This view displays information about memory allocated
to library cache memory objects in different namespaces. A memory object is an
internal grouping of memory for efficient management. A library cache object may
consist of one or more memory objects.

V$JAVA_POOL_ADVICE and V$JAVA_LIBRARY_CACHE_MEMORY These views contain Java
pool advisory statistics that track information about library cache memory used for
Java and predict how changes in the size of the Java pool can affect the parse rate.

V$JAVA_POOL_ADVICE displays information about estimated parse time in the Java pool
for different pool sizes. The sizes range from 10% of the current Java pool size or the
amount of pinned Java library cache memory, whichever is higher, to 200% of the
current Java pool size, in equal intervals. The value of the interval depends on the
current size of the Java pool.

See Also: Oracle Database Reference for information about the
dynamic performance V$SHARED_POOL_ADVICE, VSLIBRARY CACHE_
MEMORY, VSJAVA_POOL_ADVICE, and VSJAVA LIBRARY CACHE_MEMORY
view

Shared Pool: Dictionary Cache Statistics

Typically, if the shared pool is adequately sized for the library cache, it will also be
adequate for the dictionary cache data.

Misses on the data dictionary cache are to be expected in some cases. On instance
startup, the data dictionary cache contains no data. Therefore, any SQL statement
issued is likely to result in cache misses. As more data is read into the cache, the
likelihood of cache misses decreases. Eventually, the database reaches a steady state, in
which the most frequently used dictionary data is in the cache. At this point, very few
cache misses occur.

Each row in the V$ROWCACHE view contains statistics for a single type of data dictionary
item. These statistics reflect all data dictionary activity since the most recent instance
startup. The columns in the VSROWCACHE view that reflect the use and effectiveness of

Configuring and Using Memory 7-25

Configuring and Using the Shared Pool and Large Pool

the data dictionary cache are listed in Table 7-2.

Table 7-2 V$SROWCACHE Columns

Column Description

PARAMETER Identifies a particular data dictionary item. For each row, the
value in this column is the item prefixed by dc_. For example, in
the row that contains statistics for file descriptions, this column
has the value dc_files.

GETS Shows the total number of requests for information about the
corresponding item. For example, in the row that contains
statistics for file descriptions, this column has the total number
of requests for file description data.

GETMISSES Shows the number of data requests which were not satisfied by
the cache, requiring an I/0.

MODIFICATIONS Shows the number of times data in the dictionary cache was
updated.

Use the following query to monitor the statistics in the VSROWCACHE view over a period
while your application is running. The derived column PCT_SUCC_GETS can be
considered the item-specific hit ratio:

column parameter format a2l
column pct_succ_gets format 999.9
column updates format 999,999,999

SELECT parameter
, sum(gets)
, sum(getmisses)
, 100*sum(gets - getmisses) / sum(gets) pct_succ_gets
, sum(modifications) updates

FROM VSROWCACHE
WHERE gets > 0
GROUP BY parameter;

The output of this query will be similar to the following;:

PARAMETER SUM (GETS) SUM(GETMISSES) PCT_SUCC_GETS UPDATES
dc_database_links 81 1 98.8 0
dc_free_extents 44876 20301 54.8 40,453
dc_global_oids 42 9 78.6 0
dc_histogram_defs 9419 651 93.1 0
dc_object_ids 29854 239 99.2 52
dc_objects 33600 590 98.2 53
dc_profiles 19001 1 100.0 0
dc_rollback_segments 47244 16 100.0 19
dc_segments 100467 19042 81.0 40,272
dc_sequence_grants 119 16 86.6 0
dc_sequences 26973 16 99.9 26,811
dc_synonyms 6617 168 97.5 0
dc_tablespace_quotas 120 7 94.2 51
dc_tablespaces 581248 10 100.0 0
dc_used_extents 51418 20249 60.6 42,811
dc_user_grants 76082 18 100.0 0
dc_usernames 216860 12 100.0 0
dc_users 376895 22 100.0 0

Examining the data returned by the sample query leads to these observations:

7-26 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

= There are large numbers of misses and updates for used extents, free extents, and
segments. This implies that the instance had a significant amount of dynamic
space extension.

= Based on the percentage of successful gets, and comparing that statistic with the
actual number of gets, the shared pool is large enough to store dictionary cache
data adequately.

It is also possible to calculate an overall dictionary cache hit ratio using the following
formula; however, summing up the data over all the caches will lose the finer
granularity of data:

SELECT (SUM(GETS - GETMISSES - FIXED)) / SUM(GETS) "ROW CACHE" FROM VS$SROWCACHE;

Interpreting Shared Pool Statistics

Shared pool statistics indicate adjustments that can be made. The following sections
describe some of your choices.

Increasing Memory Allocation

Increasing the amount of memory for the shared pool increases the amount of memory
available to the library cache, the dictionary cache, and the result cache (see "Managing
Server Result Cache Memory with Initialization Parameters" on page 7-56).

Allocating Additional Memory for the Library Cache To ensure that shared SQL areas remain
in the cache after their SQL statements are parsed, increase the amount of memory
available to the library cache until the VSLIBRARYCACHE.RELOADS value is near zero. To
increase the amount of memory available to the library cache, increase the value of the
initialization parameter SHARED_POOL_SIZE. The maximum value for this parameter
depends on your operating system. This measure reduces implicit reparsing of SQL
statements and PL/SQL blocks on execution.

Allocating Additional Memory to the Data Dictionary Cache Examine cache activity by
monitoring the GETS and GETMISSES columns. For frequently accessed dictionary
caches, the ratio of total GETMISSES to total GETS should be less than 10% or 15%,
depending on the application.

Consider increasing the amount of memory available to the cache if all of the
following are true:

= Your application is using the shared pool effectively. See "Using the Shared Pool
Effectively" on page 7-19.

= Your system has reached a steady state, any of the item-specific hit ratios are low,
and there are a large numbers of gets for the caches with low hit ratios.

Increase the amount of memory available to the data dictionary cache by increasing
the value of the initialization parameter SHARED_POOL_SIZE.

Reducing Memory Allocation

If your RELOADS are near zero, and if you have a small amount of free memory in the
shared pool, then the shared pool is probably large enough to hold the most frequently
accessed data.

If you always have significant amounts of memory free in the shared pool, and if you
would like to allocate this memory elsewhere, then you might be able to reduce the
shared pool size and still maintain good performance.

Configuring and Using Memory 7-27

Configuring and Using the Shared Pool and Large Pool

To make the shared pool smaller, reduce the size of the cache by changing the value for
the parameter SHARED_POOL_SIZE.

Using the Large Pool

Unlike the shared pool, the large pool does not have an LRU list. Oracle Database does
not attempt to age objects out of the large pool.

You should consider configuring a large pool if your instance uses any of the
following:

= DParallel query

Parallel query uses shared pool memory to cache parallel execution message
buffers.

See Also:

» Oracle Database VLDB and Partitioning Guide to learn how to
perform parallel execution

» Oracle Database Data Warehousing Guide for more information on
sizing the large pool with parallel query

= Recovery Manager

Recovery Manager uses the shared pool to cache 1/O buffers during backup and
restore operations. For I/O server processes and backup and restore operations,
Oracle Database allocates buffers that are a few hundred kilobytes in size.

See Also: Oracle Database Backup and Recovery User’s Guide for
more information on sizing the large pool when using Recovery
Manager

s Shared server

In a shared server architecture, the session memory for each client process is
included in the shared pool.

Tuning the Large Pool and Shared Pool for the Shared Server Architecture

As Oracle Database allocates shared pool memory for shared server session memory,
the amount of shared pool memory available for the library cache and dictionary cache
decreases. If you allocate this session memory from a different pool, then Oracle
Database can use the shared pool primarily for caching shared SQL and not incur the
performance overhead from shrinking the shared SQL cache.

Oracle Database recommends using the large pool to allocate the shared server-related
User Global Area (UGA), rather that using the shared pool. This is because Oracle
Database uses the shared pool to allocate System Global Area (SGA) memory for other
purposes, such as shared SQL and PL/SQL procedures. Using the large pool instead of
the shared pool decreases fragmentation of the shared pool.

To store shared server-related UGA in the large pool, specify a value for the
initialization parameter LARGE_POOL_SIZE. To see which pool (shared pool or large
pool) the memory for an object resides in, check the column POOL in V$SGASTAT. The
large pool is not configured by default; its minimum value is 300K. If you do not
configure the large pool, then Oracle Database uses the shared pool for shared server
user session memory.

7-28 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Configure the size of the large pool based on the number of simultaneously active
sessions. Each application requires a different amount of memory for session
information, and your configuration of the large pool or SGA should reflect the
memory requirement. For example, assuming that the shared server requires 200K to
300K to store session information for each active session. If you anticipate 100 active
sessions simultaneously, then configure the large pool to be 30M, or increase the
shared pool accordingly if the large pool is not configured.

Note: If a shared server architecture is used, then Oracle Database
allocates some fixed amount of memory (about 10K) for each
configured session from the shared pool, even if you have
configured the large pool. The CIRCUITS initialization parameter
specifies the maximum number of concurrent shared server
connections that the database allows.

See Also:

» Oracle Database Concepts for more information about the large
pool

» Oracle Database Reference for complete information about
initialization parameters

Determining an Effective Setting for Shared Server UGA Storage The exact amount of UGA
that Oracle Database uses depends on each application. To determine an effective
setting for the large or shared pools, observe UGA use for a typical user and multiply
this amount by the estimated number of user sessions.

Even though use of shared memory increases with shared servers, the total amount of
memory use decreases. This is because there are fewer processes; therefore, Oracle
Database uses less PGA memory with shared servers when compared to dedicated
server environments.

Note: For best performance with sorts using shared servers, set
SORT_AREA SIZE and SORT AREA RETAINED_SIZE to the same value.
This keeps the sort result in the large pool instead of having it
written to disk.

Checking System Statistics in the VSSESSTAT View Oracle Database collects statistics on
total memory used by a session and stores them in the dynamic performance view
V$SESSTAT. Table 7-3 lists these statistics.

Table 7-3 V$SESSTAT Statistics Reflecting Memory

Statistic Description

session UGA memory The value of this statistic is the amount of memory in
bytes allocated to the session.

Session UGA memory max The value of this statistic is the maximum amount of
memory in bytes ever allocated to the session.

To find the value, query V$STATNAME. If you are using a shared server, you can use the
following query to decide how much larger to make the shared pool. Issue the
following queries while your application is running:

Configuring and Using Memory 7-29

Configuring and Using the Shared Pool and Large Pool

SELECT SUM (VALUE) |\ ' BYTES' "TOTAL MEMORY FOR ALL SESSIONS"
FROM VS$SESSTAT, VSSTATNAME
WHERE NAME = 'session uga memory'
AND VSSESSTAT.STATISTIC# = VSSTATNAME.STATISTICH#;

SELECT SUM (VALUE) |‘ ' BYTES' "TOTAL MAX MEM FOR ALL SESSIONS"
FROM VS$SESSTAT, VSSTATNAME
WHERE NAME = 'session uga memory max'

AND V$SESSTAT.STATISTIC# = VSSTATNAME.STATISTICH#;

These queries also select from the dynamic performance view V$STATNAME to obtain
internal identifiers for session memory and max session memory. The results of
these queries could look like the following:

TOTAL MEMORY FOR ALL SESSIONS

157125 BYTES

TOTAL MAX MEM FOR ALL SESSIONS

417381 BYTES

The result of the first query indicates that the memory currently allocated to all
sessions is 157,125 bytes. This value is the total memory with a location that depends
on how the sessions are connected to Oracle. If the sessions are connected to dedicated
server processes, then this memory is part of the memories of the user processes. If the
sessions are connected to shared server processes, then this memory is part of the
shared pool.

The result of the second query indicates that the sum of the maximum size of the

memory for all sessions is 417,381 bytes. The second result is greater than the first
because some sessions have deallocated memory since allocating their maximum
amounts.

If you use a shared server architecture, you can use the result of either of these queries
to determine how much larger to make the shared pool. The first value is likely to be a
better estimate than the second unless nearly all sessions are likely to reach their
maximum allocations at the same time.

Limiting Memory Use for Each User Session by Setting PRIVATE_SGA You can set the
PRIVATE_SGA resource limit to restrict the memory used by each client session from the
SGA. PRIVATE_SGA defines the number of bytes of memory used from the SGA by a
session. However, this parameter is used rarely, because most DBAs do not limit SGA
consumption on a user-by-user basis.

See Also: Oracle Database SQL Language Reference, ALTER
RESOURCE COST statement, for more information about setting the
PRIVATE_SGA resource limit

Reducing Memory Use with Three-Tier Connections If you have a high number of connected
users, then you can reduce memory usage by implementing three-tier connections.
This by-product of using a transaction process (TP) monitor is feasible only with pure
transactional models because locks and uncommitted DMLs cannot be held between
calls. A shared server environment offers the following advantages:

s Itis much less restrictive of the application design than a TP monitor.

= It dramatically reduces operating system process count and context switches by
enabling users to share a pool of servers.

7-30 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

= It substantially reduces overall memory usage, even though more SGA is used in
shared server mode.

Using CURSOR_SPACE_FOR_TIME

If you have no library cache misses, then you might be able to accelerate execution
calls by setting the value of the initialization parameter CURSOR_SPACE_FOR_TIME to
true. This parameter specifies whether a cursor can be deallocated from the library
cache to make room for a new SQL statement. CURSOR_SPACE_FOR_TIME has the
following values meanings:

s If CURSOR_SPACE_FOR_TIME is set to false (the default), then a cursor can be
deallocated from the library cache regardless of whether application cursors
associated with its SQL statement are open. In this case, Oracle Database must
verify that the cursor containing the SQL statement is in the library cache.

= If CURSOR_SPACE_FOR_TIME is set to true, then a cursor can be deallocated only
when all application cursors associated with its statement are closed. In this case,
Oracle Database need not verify that a cursor is in the cache because it cannot be
deallocated while an application cursor associated with it is open.

Setting the value of the parameter to true saves Oracle Database a small amount of
time and can slightly improve the performance of execution calls. This value also
prevents the deallocation of cursors until associated application cursors are closed.

Do not set the value of CURSOR_SPACE_FOR_TIME to true if you have found library
cache misses on execution calls. Such library cache misses indicate that the shared pool
is not large enough to hold the shared SQL areas of all concurrently open cursors. If
the value is true, and if the shared pool has no space for a new SQL statement, then
the statement cannot be parsed, and Oracle Database returns an error saying that there
is no more shared memory. If the value is false, and if there is no space for a new
statement, then Oracle Database deallocates an existing cursor. Although deallocating
a cursor could result in a library cache miss later (only if the cursor is reexecuted), it is
preferable to an error halting your application because a SQL statement cannot be
parsed.

Do not set the value of CURSOR_SPACE_FOR_TIME to true if the amount of memory
available to each user for private SQL areas is scarce. This value also prevents the
deallocation of private SQL areas associated with open cursors. If the private SQL
areas for all concurrently open cursors fills your available memory so that there is no
space for a new SQL statement, then the statement cannot be parsed. Oracle Database
returns an error indicating that there is not enough memory.

Caching Session Cursors

The session cursor cache contains closed session cursors for SQL and PL/SQL,
including recursive SQL.

This cache can be useful for applications that use Oracle Forms because switching
from one form to another closes all session cursors associated with the first form. If an
application repeatedly issues parse calls on the same set of SQL statements, then
reopening session cursors can degrade performance. By reusing cursors, the database
can reduce parse times, leading to faster overall execution times.

How the Session Cursor Cache Works

A session cursor represents an instantiation of a shared child cursor, which is stored
in the shared pool, for a specific session. Each session cursor stores a reference to a
child cursor that it has instantiated.

Configuring and Using Memory 7-31

Configuring and Using the Shared Pool and Large Pool

Oracle Database checks the library cache to determine whether more than three parse
requests have been issued on a given statement. If a cursor has been closed three times,
then Oracle Database assumes that the session cursor associated with the statement
should be cached and moves the cursor into the session cursor cache.

Subsequent requests to parse a SQL statement by the same session search an array for
pointers to the shared cursor. If the pointer is found, then the database dereferences
the pointer to determine whether the shared cursor exists. To reuse a cursor from the
cache, the cache manager checks whether the cached states of the cursor match the
current session and system environment.

Note: Reuse of a cached cursor still registers as a parse, even though
it is not a hard parse.

An LRU algorithm removes entries in the session cursor cache to make room for new
entries when needed. The cache also uses an internal time-based algorithm to evict
cursors that have been idle for an certain amount of time.

Enabling the Session Cursor Cache
The following initialization parameters are relevant to the cursor cache:

m SESSION_CACHED_CURSORS

This parameter sets the maximum number of cached closed cursors for each
session. The default setting is 50. You can use this parameter to prevent a session
from opening an excessive number of cursors, thereby filling the library cache or
forcing excessive hard parses.

= OPEN_CURSORS

This parameter specifies the maximum number of cursors a session can have open
simultaneously. For example, if OPEN_CURSORS is set to 1000, then each session can
have up to 1000 cursors open at one time.

SESSION_CACHED_CURSORS and OPEN_CURSORS parameters are independent. For
example, you can set SESSION_CACHED_CURSORS higher than OPEN_CURSORS because
session cursors are not cached in an open state.

To enable caching of session cursors:
1. Determine the maximum number of session cursors to keep in the cache.
2. Do one of the following:

= To enable caching statically, set the initialization parameter SESSION_CACHED_
CURSORS to the number determined in the previous step.

= To enable caching dynamically, execute the following statement:

ALTER SESSION SET SESSION_CACHED_CURSORS = value;

Tuning the Session Cursor Cache

You can query V$SYSSTAT to determine whether the session cursor cache is sufficiently
large for the database instance.

To tune the session cursor cache:
1. Determine how many cursors are currently cached in a particular session.

For example, enter the following query for session 35:

7-32 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

sys@DBS1> SELECT a.value curr_cached, p.value max_cached,
2 s.username, s.sid, s.serial#
3 FROM vS$sesstat a, vSstatname b, vSsession s, vSparameter2 p
4 WHERE a.statistic# = b.statistic# and s.sid=a.sid and a.sid=&sid
5 AND p.name="'session_cached_cursors'
6 AND b.name = 'session cursor cache count';
Enter value for sid: 35
old 4: WHERE a.statistic# b.statistic# and s.sid=a.sid and a.sid=&sid
new 4: WHERE a.statistic# = b.statistic# and s.sid=a.sid and a.sid=35

CURR_CACHED MAX_CACHED USERNAME SID SERTIAL#

The preceding result shows that the number of cursors currently cached for
session 35 is close to the maximum.

2. Find the percentage of parse calls that found a cursor in the session cursor cache.
For example, enter the following query for session 35:

SQL> SELECT cach.value cache_hits, prs.value all_parses,
2 round ((cach.value/prs.value)*100,2) as "% found in cache"

3 FROM vS$sesstat cach, v$sesstat prs, v$statname nml, v$statname nm2
4 WHERE cach.statistic# = nml.statistic#

5 AND nml.name = 'session cursor cache hits'

6 AND prs.statistic#=nm2.statistic#

7 AND nm2.name= 'parse count (total)'

8 AND cach.sid= &sid and prs.sid= cach.sid;
Enter value for sid: 35
old 8: AND cach.sid= &sid and prs.sid= cach.sid
new 8: AND cach.sid= 35 and prs.sid= cach.sid

CACHE_HITS ALL_PARSES % found in cache

The preceding result shows that the number of hits in the session cursor cache for
session 35 is low compared to the total number of parses.

3. Consider increasing SESSION_CACHED_CURSORS when the following statements are
true:

s The session cursor cache count is close to the maximum.
= The percentage of session cursor cache hits is low relative to the total parses.
s The application repeatedly makes parse calls for the same queries.

In this example, setting SESSION_CACHED_CURSORS to 100 may help boost
performance.

Configuring the Reserved Pool

Although Oracle Database breaks down very large requests for memory into smaller
chunks, on some systems there might still be a requirement to find a contiguous chunk
(for example, over 5 KB) of memory. (The default minimum reserved pool allocation is
4,400 bytes.)

If there is not enough free space in the shared pool, then Oracle Database must search
for and free enough memory to satisfy this request. This operation could conceivably

Configuring and Using Memory 7-33

Configuring and Using the Shared Pool and Large Pool

hold the latch resource for detectable periods of time, causing minor disruption to
other concurrent attempts at memory allocation.

Thus, Oracle Database internally reserves a small memory area in the shared pool that
the database can use if the shared pool does not have enough space. This reserved pool
makes allocation of large chunks more efficient.

By default, Oracle Database configures a small reserved pool. The database can use
this memory for operations such as PL/SQL and trigger compilation or for temporary
space while loading Java objects. After the memory allocated from the reserved pool is
freed, it returns to the reserved pool.

You probably will not need to change the default amount of space Oracle Database
reserves. However, if necessary, the reserved pool size can be changed by setting the
SHARED_POOL_RESERVED_SIZE initialization parameter. This parameter sets aside space
in the shared pool for unusually large allocations.

For large allocations, Oracle Database attempts to allocate space in the shared pool in
the following order:

1. From the unreserved part of the shared pool.

2. From the reserved pool. If there is not enough space in the unreserved part of the
shared pool, then Oracle Database checks whether the reserved pool has enough
space.

3. From memory. If there is not enough space in the unreserved and reserved parts of
the shared pool, then Oracle Database attempts to free enough memory for the
allocation. It then retries the unreserved and reserved parts of the shared pool.

Using SHARED_POOL_RESERVED_SIZE

The default value for SHARED_POOL_RESERVED_SIZE is 5% of the SHARED_POOL_SIZE.
This means that, by default, the reserved list is configured.

If you set SHARED_POOL_RESERVED_SIZE to more than half of SHARED_POOL_SIZE, then
Oracle Database signals an error. Oracle Database does not let you reserve too much
memory for the reserved pool. The amount of operating system memory, however,
might constrain the size of the shared pool. In general, set SHARED_POOL_RESERVED_
SIZE to 10% of SHARED_POOL_SIZE. For most systems, this value is sufficient if you have
tuned the shared pool. If you increase this value, then the database takes memory from
the shared pool. (This reduces the amount of unreserved shared pool memory
available for smaller allocations.)

Statistics from the V$SHARED_POOL_RESERVED view help you tune these parameters. On
a system with ample free memory to increase the size of the SGA, the goal is to have
the value of REQUEST_MISSES equal zero. If the system is constrained for operating
system memory, then the goal is to not have REQUEST_FAILURES or at least prevent this
value from increasing.

If you cannot achieve these target values, then increase the value for SHARED_POOL_
RESERVED_SIZE. Also, increase the value for SHARED_POOL_SIZE by the same amount,
because the reserved list is taken from the shared pool.

See Also: Oracle Database Reference for details on setting the
LARGE_POOL_SIZE parameter

When SHARED_POOL_RESERVED_SIZE Is Too Small

The reserved pool is too small when the value for REQUEST_FAILURES is more than zero
and increasing. To resolve this, increase the value for the SHARED_POOL_RESERVED_SIZE

7-34 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

and SHARED_POOL_SIZE accordingly. The settings you select for these parameters
depend on your system's SGA size constraints.

Increasing the value of SHARED_POOL_RESERVED_SIZE increases the amount of memory
available on the reserved list without having an effect on users who do not allocate
memory from the reserved list.

When SHARED_POOL_RESERVED_SIZE Is Too Large

Too much memory might have been allocated to the reserved list if:
= REQUEST_MISSES is zero or not increasing

= FREE_SPACE is greater than or equal to 50% of SHARED_POOL_RESERVED_SIZE
minimum

If either of these conditions is true, then decrease the value for SHARED_POOL_
RESERVED_SIZE.

When SHARED_POOL_SIZE is Too Small

The V$SHARED_POOL_RESERVED fixed view can also indicate when the value for SHARED_
POOL_SIZE is too small. This can be the case if REQUEST FAILURES is greater than zero
and increasing.

If you have enabled the reserved list, then decrease the value for SHARED_POOL_
RESERVED_SIZE. If you have not enabled the reserved list, then you could increase
SHARED_POOL_SIZE.

Keeping Large Objects to Prevent Aging

After an entry has been loaded into the shared pool, it cannot be moved. Sometimes,
as entries are loaded and aged, the free memory can become fragmented.

Use the PL/SQL package DBMS_SHARED_POOL to manage the shared pool. Shared SQL
and PL/SQL areas age out of the shared pool according to a least recently used LRU
algorithm, similar to database buffers. To improve performance and prevent reparsing,
you might want to prevent large SQL or PL/SQL areas from aging out of the shared
pool.

The DBMS_SHARED_POOL package enables you to keep objects in shared memory, so that
they do not age out with the normal LRU mechanism. By using the DBMS_SHARED_POOL
package and by loading the SQL and PL/SQL areas before memory fragmentation
occurs, the database can keep objects in memory. This technique ensures that memory
is available, and it prevents the sudden, inexplicable slowdowns in user response time
that occur when SQL and PL/SQL areas are accessed after aging out.

The DBMS_SHARED_POOL package is useful for the following:
= When loading large PL/SQL objects, such as the STANDARD and DIUTIL packages

When large PL/SQL objects are loaded, user response time may be affected if
smaller objects that must age out of the shared pool to make room. In some cases,
there might be insufficient memory to load the large objects.

» Frequently executed triggers

You might want to keep compiled triggers on frequently used tables in the shared
pool.

= Sequences

Configuring and Using Memory 7-35

Configuring and Using the Shared Pool and Large Pool

Sequence numbers are lost when a sequence ages out of the shared pool. DBMS_
SHARED_POOL keeps sequences in the shared pool, thus preventing the loss of
sequence numbers.

To use the DBMS_SHARED_POOL package to pin a SQL or PL/SQL area, complete the
following steps:

1. Decide which packages or cursors to pin in memory.
2, Start up the database.
3. Make the call to DBMS_SHARED_POOL.KEEP to pin your objects.

This procedure ensures that your system does not run out of shared memory
before the kept objects are loaded. By pinning the objects early in the life of the
instance, you prevent memory fragmentation that could result from pinning a
large portion of memory in the middle of the shared pool.

See Also: Oracle Database PL/SQL Packages and Types Reference for
specific information on using DBMS_SHARED_POOL procedures

Sharing Cursors for Existing Applications

In the context of SQL parsing, an identical statement is a statement whose text is
identical to another, character for character, including spaces, case, and comments. A
similar statement is identical except for the values of some literals.

The parse phase compares the statement text with statements in the shared pool to
determine whether the statement can be shared. If the initialization parameter CURSOR_
SHARING=EXACT (default), and if a statement in the pool is not identical, then the
database does not share the SQL area. Each statement has its own parent cursor and its
own execution plan based on the literal in the statement.

How Similar Statements Can Share SQL Areas

When SQL statements use literals rather than bind variables, a nondefault setting for
CURSOR_SHARING enables the database to replace literals with system-generated bind
variables. Using this technique, the database can sometimes reduce the number of
parent cursors in the shared SQL area.

When CURSOR_SHARING is set to a nondefault value, the database performs the
following steps during the parse:

1. Searches for an identical statement in the shared pool

If an identical statement is found, then the database skips to Step 3. Otherwise, the
database proceeds to the next step.

2. Searches for a similar statement in the shared pool

If a similar statement is not found, then the database performs a hard parse. If a
similar statement is found, then the database proceeds to the next step.

3. Proceeds through the remaining steps of the parse phase to ensure that the
execution plan of the existing statement is applicable to the new statement

If the plan is not applicable, then the database performs a hard parse. If the plan is
applicable, then the database proceeds to the next step.

4. Shares the SQL area of the statement

7-36 Oracle Database Performance Tuning Guide

Configuring and Using the Shared Pool and Large Pool

Note: The database does not perform literal replacement on the
ORDER BY clause because it is not semantically correct to consider the
constant column number as a literal. The column number in the ORDER
BY clause affects the query plan and execution, so the database cannot
share two cursors having different column numbers.

See Also: "SQL Sharing Criteria" on page 7-18 for more details on
the various checks performed

When to Set CURSOR_SHARING to a Nondefault Value

The best practice is to write sharable SQL and use the default of EXACT for CURSOR_
SHARING. However, for applications with many similar statements, setting CURSOR_
SHARING can significantly improve cursor sharing, resulting in reduced memory usage,
faster parses, and reduced latch contention. Consider this approach when statements
in the shared pool differ only in the values of literals, and when response time is poor
because of a very high number of library cache misses.

If stored outlines were generated with CURSOR_SHARING set to EXACT, then the database
does not use stored outlines generated with literals. To avoid this problem, generate
outlines with CURSOR_SHARING set to FORCE and use the CREATE_STORED_OUTLINES
parameter.

Setting CURSOR_SHARING to FORCE has the following drawbacks:

s The database must perform extra work during the soft parse to find a similar
statement in the shared pool.

s There is an increase in the maximum lengths (as returned by DESCRIBE) of any
selected expressions that contain literals in a SELECT statement. However, the
actual length of the data returned does not change.

= Star transformation is not supported.

When deciding whether to set CURSOR_SHARING to FORCE, consider the performance
implications of each setting. When CURSOR_SHARING is set to FORCE, the database uses
one parent cursor and one child cursor for each distinct SQL statement. The database
uses the same plan for each execution of the same statement. For example, consider the
following statement:

SELECT * FROM hr.employees WHERE employee_id = 101
If FORCE is used, then the database optimizes this statement as if it contained a bind

variable and uses bind peeking to estimate cardinality. Statements that differ only in
the bind variable share the same execution plan.

Note: Starting with Oracle Database 11g Release 2, setting the value
of the CURSOR_SHARING to SIMILAR is obsolete. Consider adaptive
cursor sharing instead.

See Also:
= "Adaptive Cursor Sharing" on page 11-9
= "Enabling Query Optimizer Features" on page 11-35

» Oracle Database Reference to learn about the CURSOR_SHARING
initialization parameter

Configuring and Using Memory 7-37

Configuring and Using the Redo Log Buffer

Maintaining Connections

Large OLTP applications with middle tiers should maintain connections, rather than
connecting and disconnecting for each database request. Maintaining persistent
connections saves CPU resources and database resources, such as latches.

See Also: "Operating System Statistics" on page 5-4 for a
description of important operating system statistics

Configuring and Using the Redo Log Buffer

Server processes making changes to data blocks in the buffer cache generate redo data
into the log buffer. LGWR begins writing to copy entries from the redo log buffer to
the online redo log if any of the following are true:

s The log buffer becomes at least one-third full
s LGWRis posted by a server process performing a COMMIT or ROLLBACK
= DBWR posts LGWR to do so

When LGWR writes redo entries from the redo log buffer to a redo log file or disk,
user processes can then copy new entries over the entries in memory that have been
written to disk. LGWR usually writes fast enough to ensure that space is available in
the buffer for new entries, even when access to the redo log is heavy.

A larger buffer makes it more likely that there is space for new entries, and also gives
LGWR the opportunity to efficiently write out redo records (too small a log buffer on a
system with large updates means that LGWR is continuously flushing redo to disk so
that the log buffer remains two-thirds empty).

On computers with fast processors and relatively slow disks, the processors might be
filling the rest of the buffer in the time it takes the redo log writer to move a portion of
the buffer to disk. A larger log buffer can temporarily mask the effect of slower disks
in this situation. Alternatively, you can do one of the following:

= Improve the checkpointing or archiving process

= Improve the performance of log writer (perhaps by moving all online logs to fast
raw devices)

Good usage of the redo log buffer is a simple matter of:

= Batching commit operations for batch jobs, so that log writer is able to write redo
log entries efficiently

= Using NOLOGGING operations when you are loading large quantities of data

The size of the redo log buffer is determined by the initialization parameter LOG_
BUFFER. You cannot modify the log buffer size after instance startup.

7-38 Oracle Database Performance Tuning Guide

PGA Memory Management

Figure 7-2 Redo Log Buffer

Being filled by
DML users Being written to
disk by LGWR
Sizing the Log Buffer

Applications that insert, modify, or delete large volumes of data usually need to
change the default log buffer size. The log buffer is small compared with the total SGA
size, and a modestly sized log buffer can significantly enhance throughput on systems
that perform many updates.

A reasonable first estimate for such systems is to the default value, which is:

MAX (0.5M, (128K * number of cpus))

On most systems, sizing the log buffer larger than 1M does not provide any
performance benefit. Increasing the log buffer size does not have any negative
implications on performance or recoverability. It merely uses extra memory.

Log Buffer Statistics

The statistic REDO BUFFER ALLOCATION RETRIES reflects the number of times a user
process waits for space in the redo log buffer. This statistic can be queried through the
dynamic performance view V$SYSSTAT.

Use the following query to monitor these statistics over a period while your
application is running:
SELECT NAME, VALUE

FROM VSSYSSTAT
WHERE NAME = 'redo buffer allocation retries';

The value of redo buffer allocation retries should be near zero over an interval.
If this value increments consistently, then processes have had to wait for space in the
redo log buffer. The wait can be caused by the log buffer being too small or by
checkpointing. Increase the size of the redo log buffer, if necessary, by changing the
value of the initialization parameter LOG_BUFFER. The value of this parameter is
expressed in bytes. Alternatively, improve the checkpointing or archiving process.

Another data source is to check whether the 1og buffer space wait event is not a
significant factor in the wait time for the instance; if not, the log buffer size is most
likely adequate.

PGA Memory Management

The Program Global Area (PGA) is a private memory region containing data and
control information for a server process. Access to it is exclusive to the server process

Configuring and Using Memory 7-39

PGA Memory Management

and is read and written only by the Oracle Database code acting on behalf of it. An
example of such information is the run-time area of a cursor. Each time a cursor is
executed, a new run-time area is created for that cursor in the PGA memory region of
the server process executing that cursor.

Note: Part of the run-time area can be located in the SGA when
using shared servers.

For complex queries (for example, decision support queries), a big portion of the
run-time area is dedicated to work areas allocated by memory intensive operators,
such as the following:

= Sort-based operators, such as ORDER BY, GROUP BY, ROLLUP, and window functions
= Hash-join

= Bitmap merge

= Bitmap create

= Write buffers used by bulk load operations

A sort operator uses a work area (the sort area) to perform the in-memory sort of a set
of rows. Similarly, a hash-join operator uses a work area (the hash area) to build a hash
table from its left input.

The size of a work area can be controlled and tuned. Generally, bigger work areas can
significantly improve the performance of a particular operator at the cost of higher
memory consumption. Ideally, the size of a work area is big enough that it can
accommodate the input data and auxiliary memory structures allocated by its
associated SQL operator. This is known as the optimal size of a work area. When the
size of the work area is smaller than optimal, the response time increases, because an
extra pass is performed over part of the input data. This is known as the one-pass size
of the work area. Under the one-pass threshold, when the size of a work area is far too
small compared to the input data size, multiple passes over the input data are needed.
This could dramatically increase the response time of the operator. This is known as
the multi-pass size of the work area. For example, a serial sort operation that must sort
10 GB of data needs a little more than 10 GB to run optimal and at least 40 MB to run
one-pass. If this sort gets less that 40 MB, then it must perform several passes over the
input data.

The goal is to have most work areas running with an optimal size (for example, more
than 90% or even 100% for pure OLTP systems), while a smaller fraction of them run
with a one-pass size (for example, less than 10%). Multi-pass execution should be
avoided. Even for DSS systems running large sorts and hash-joins, the memory
requirement for the one-pass executions is relatively small. A system configured with a
reasonable amount of PGA memory should not need to perform multiple passes over
the input data.

Automatic PGA memory management simplifies and improves the way PGA memory
is allocated. By default, PGA memory management is enabled. In this mode, Oracle
Database dynamically adjusts the size of the portion of the PGA memory dedicated to
work areas, based on 20% of the SGA memory size. The minimum value is 10MB.

7-40 Oracle Database Performance Tuning Guide

PGA Memory Management

Note: For backward compatibility, automatic PGA memory
management can be disabled by setting the value of the PGA_
AGGREGATE_TARGET initialization parameter to 0. When automatic
PGA memory management is disabled, the maximum size of a
work area can be sized with the associated _AREA_SIZE parameter,
such as the SORT_AREA_SIZE initialization parameter.

See Also: For information about the PGA_AGGREGATE_TARGET, SORT_
AREA_SIZE, HASH_AREA_SIZE, BITMAP_MERGE_AREA_SIZE and CREATE_
BITMAP_AREA SIZE initialization parameters, see Oracle Database
Reference.

Configuring Automatic PGA Memory

When running under the automatic PGA memory management mode, sizing of work
areas for all sessions becomes automatic and the *_AREA_SIZE parameters are ignored
by all sessions running in that mode. At any given time, the total amount of PGA
memory available to active work areas in the instance is automatically derived from
the PGA_AGGREGATE_TARGET initialization parameter. This amount is set to the value of
PGA_AGGREGATE_TARGET minus the amount of PGA memory allocated by other
components of the system (for example, PGA memory allocated by sessions). The
resulting PGA memory is then assigned to individual active work areas, based on their
specific memory requirements.

Under automatic PGA memory management mode, the main goal of Oracle Database
is to honor the PGA_AGGREGATE_TARGET limit set by the DBA, by controlling
dynamically the amount of PGA memory allotted to SQL work areas. At the same
time, Oracle Database t to maximize the performance of all the memory-intensive SQL
operations, by maximizing the number of work areas that are using an optimal
amount of PGA memory (cache memory). The rest of the work areas are executed in
one-pass mode, unless the PGA memory limit set by the DBA with the parameter PGA_
AGGREGATE_TARGET is so low that multi-pass execution is required to reduce even more
the consumption of PGA memory and honor the PGA target limit.

When configuring a brand new instance, it is hard to know precisely the appropriate
setting for PGA_AGGREGATE_TARGET. You can determine this setting in three stages:

1. Make a first estimate for PGA_AGGREGATE_TARGET. By default, Oracle Database uses
20% of the SGA size. However, this initial setting may be too low for a large DSS
system.

2. Run a representative workload on the instance and monitor performance, using
PGA statistics collected by Oracle Database, to see whether the maximum PGA
size is under-configured or over-configured.

3. Tune PGA_AGGREGATE_TARGET, using Oracle PGA advice statistics.

See Also: Oracle Database Reference for information about the PGA_
AGGREGATE_TARGET initialization parameter

The following sections explain this in detail:
s Setting PGA_AGGREGATE_TARGET Initially
= Monitoring the Performance of the Automatic PGA Memory Management

s Tuning PGA_AGGREGATE_TARGET

Configuring and Using Memory 7-41

PGA Memory Management

Setting PGA_AGGREGATE_TARGET Initially

The value of the PGA_AGGREGATE_TARGET initialization parameter (for example 100000
KB, 2500 MB, or 50 GB) should be set based on the total amount of memory available
for the Oracle database instance. This value can then be tuned and dynamically
modified at the instance level. Example 7-2 illustrates a typical situation.

Example 7-2 Initial Setting of PGA_AGGREGATE_TARGET

Assume that an Oracle database instance is configured to run on a system with 4 GB of
physical memory. Part of that memory should be left for the operating system and
other non-Oracle applications running on the same hardware system. You might
decide to dedicate only 80% (3.2 GB) of the available memory to the Oracle database
instance.

You must then divide the resulting memory between the SGA and the PGA.

s For OLTP systems, the PGA memory typically accounts for a small fraction of the
total memory available (for example, 20%), leaving 80% for the SGA.

s For DSS systems running large, memory-intensive queries, PGA memory can
typically use up to 70% of that total (up to 2.2 GB in this example).

Good initial values for the parameter PGA_AGGREGATE_TARGET might be:
s For OLTP: PGA_AGGREGATE_TARGET = (total_mem* 80%) * 20%
s For DSS: PGA_AGGREGATE_TARGET = (total_mem* 80%) * 50%
where total_memis the total amount of physical memory available on the system.

In this example, with a value of total_memequal to 4 GB, you can initially set PGA_
AGGREGATE_TARGET to 1600 MB for a DSS system and to 655 MB for an OLTP system.

Monitoring the Performance of the Automatic PGA Memory Management

Before starting the tuning process, you need to know how to monitor and interpret the
key statistics collected by Oracle Database to help in assessing the performance of the
automatic PGA memory management component. Several dynamic performance
views are available for this purpose:

s VSPGASTAT

= V$PROCESS

= V$PROCESS_MEMORY

= V$SQL_WORKAREA_HISTOGRAM

= V$SQL_WORKAREA_ACTIVE

= V$SQL_WORKAREA

VSPGASTAT This view gives instance-level statistics on the PGA memory usage and the
automatic PGA memory manager. For example:

SELECT * FROM VS$PGASTAT;

The output of this query might look like the following:

NAME VALUE UNIT
aggregate PGA target parameter 41156608 bytes
aggregate PGA auto target 21823488 bytes
global memory bound 2057216 bytes

7-42 Oracle Database Performance Tuning Guide

PGA Memory Management

total PGA inuse 16899072 bytes
total PGA allocated 35014656 bytes
maximum PGA allocated 136795136 bytes
total freeable PGA memory 524288 bytes
PGA memory freed back to 0OS 1713242112 bytes
total PGA used for auto workareas 0 bytes
maximum PGA used for auto workareas 2383872 bytes
total PGA used for manual workareas 0 bytes
maximum PGA used for manual workareas 8470528 bytes
over allocation count 291

bytes processed 2124600320 bytes
extra bytes read/written 39949312 bytes
cache hit percentage 98.15 percent

The main statistics displayed in V$PGASTAT are as follows:

aggregate PGA target parameter: This is the current value of the initialization
parameter PGA_AGGREGATE_TARGET. The default value is 20% of the SGA size. If you
set this parameter to 0, automatic management of the PGA memory is disabled.

aggregate PGA auto target: This gives the amount of PGA memory Oracle
Database can use for work areas running in automatic mode. This amount is
dynamically derived from the value of the parameter PGA_AGGREGATE_TARGET and
the current work area workload. Hence, it is continuously adjusted by Oracle. If
this value is small compared to the value of PGA_AGGREGATE_TARGET, then a lot of
PGA memory is used by other components of the system (for example, PL/SQL or
Java memory) and little is left for sort work areas. You must ensure that enough
PGA memory is left for work areas running in automatic mode.

global memory bound: This gives the maximum size of a work area executed in
AUTO mode. This value is continuously adjusted by Oracle Database to reflect the
current state of the work area workload. The global memory bound generally
decreases when the number of active work areas is increasing in the system. As a
rule of thumb, the value of the global bound should not decrease to less than one
megabyte. If it does, then the value of PGA_AGGREGATE_TARGET should probably be
increased.

total PGA allocated: This gives the current amount of PGA memory allocated
by the instance. Oracle Database tries to keep this number less than the value of
PGA_AGGREGATE_TARGET. However, it is possible for the PGA allocated to exceed
that value by a small percentage and for a short period, when the work area
workload is increasing very rapidly or when the initialization parameter PGA_
AGGREGATE_TARGET is set to a too small value.

total freeable PGA memory: This indicates how much allocated PGA memory
which can be freed.

total PGA used for auto workareas: This indicates how much PGA memory is
currently consumed by work areas running under automatic memory
management mode. This number can be used to determine how much memory is
consumed by other consumers of the PGA memory (for example, PL/SQL or
Java):

PGA other = total PGA allocated - total PGA used for auto workareas

over allocation count: This statistic is cumulative from instance startup.
Over-allocating PGA memory can happen if the value of PGA_AGGREGATE_TARGET is
too small to accommodate the PGA other component in the previous equation plus
the minimum memory required to execute the work area workload. When this
happens, Oracle Database cannot honor the initialization parameter PGA_

Configuring and Using Memory 7-43

PGA Memory Management

AGGREGATE_TARGET, and extra PGA memory must be allocated. If over-allocation
occurs, you should increase the value of PGA_AGGREGATE_TARGET using the
information provided by the advice view V$PGA_TARGET_ADVICE.

m total bytes processed: This is the number of bytes processed by
memory-intensive SQL operators since instance startup. For example, the number
of byte processed is the input size for a sort operation. This number is used to
compute the cache hit percentage metric.

m extra bytes read/written: When a work area cannot run optimally, one or more
extra passes is performed over the input data. extra bytes read/written
represents the number of bytes processed during these extra passes since instance
startup. This number is also used to compute the cache hit percentage. Ideally, it
should be small compared to total bytes processed.

» cache hit percentage: This metric is computed by Oracle Database to reflect the
performance of the PGA memory component. It is cumulative from instance
startup. A value of 100% means that all work areas executed by the system since
instance startup have used an optimal amount of PGA memory. This is, of course,
ideal but rarely happens except maybe for pure OLTP systems. In reality, some
work areas run one-pass or even multi-pass, depending on the overall size of the
PGA memory. When a work area cannot run optimally, one or more extra passes is
performed over the input data. This reduces the cache hit percentage in
proportion to the size of the input data and the number of extra passes performed.
Example 7-3 shows how cache hit percentage is affected by extra passes.

Example 7-3 Calculating Cache Hit Percentage

Consider a simple example: Four sort operations have been executed, three were small
(1 MB of input data) and one was bigger (100 MB of input data). The total number of
bytes processed (BP) by the four operations is 103 MB. If one of the small sorts runs
one-pass, an extra pass over 1 MB of input data is performed. This 1 MB value is the
number of extra bytes read/written, or EBP. The cache hit percentage is calculated
by the following formula:

BP x 100 / (BP + EBP)

The cache hit percentage in this case is 99.03%, almost 100%. This value reflects the
fact that only one of the small sorts had to perform an extra pass while all other sorts
were able to run optimally. Hence, the cache hit percentage is almost 100%, because
this extra pass over 1 MB represents a tiny overhead. However, if the big sort is the one
to run one-pass, then EBP is 100 MB instead of 1 MB, and the cache hit percentage
falls to 50.73%, because the extra pass has a much bigger impact.

VSPROCESS This view has one row for each Oracle process connected to the instance.
The columns PGA_USED_MEM, PGA_ALLOC_MEM, PGA_FREEABLE_MEM and PGA_MAX_MEM can
be used to monitor the PGA memory usage of these processes. For example:

SELECT PROGRAM, PGA_USED_MEM, PGA_ALLOC_MEM, PGA_FREEABLE_MEM, PGA_MAX_MEM
FROM V$PROCESS;
The output of this query might look like the following:

PGA_USED_MEM PGA_ALLOC_MEM PGA_FREEABLE_MEM PGA_MAX_ MEM

PSEUDO

oracle@exampl690
oracle@exampl690
oracle@exampl690
oracle@exampl690

0 0 0 0
(PMON) 314540 685860 0 685860
(MMAN) 313992 685860 0 685860
(DBWO) 696720 1063112 0 1063112
(LGWR) 10835108 22967940 0 22967940

7-44 Oracle Database Performance Tuning Guide

PGA Memory Management

oracle@exampl690
oracle@exampl690
oracle@exampl690
oracle@exampl690
oracle@exampl690
oracle@exampl690
oracle@exampl690
oracle@exampl690
oracle@exampl690
oracle@exampl690
oracle@exampl690

(CKPT) 352716 710376 0 710376
(SMON) 541508 948004 0 1603364
(RECO) 323688 685860 0 816932
(g001) 233508 585128 0 585128
(QMNC) 314332 685860 0 685860
(MMON) 885756 1996548 393216 1996548
(MMNL) 315068 685860 0 685860
(g000) 330872 716200 65536 716200
(TNS V1-V3) 635768 928024 0 1255704
(CJQ0) 533476 1013540 0 1144612
(TNS V1-V3) 430648 812108 0 812108

VSPROCESS_MEMORY This view displays dynamic PGA memory usage by named
component categories for each Oracle process. This view will contain up to six rows
for each Oracle process, one row for:

» Each named component category: Java, PL/SQL, OLAP, and SQL.

» Freeable: memory that has been allocated to the process by the operating system,
but not to a specific category.

» Other: memory that has been allocated to a category, but not to one of the named
categories.

You can use the columns CATEGORY, ALLOCATED, USED, and MAX_ALLOCATED to
dynamically monitor the PGA memory usage of Oracle processes for each of the six
categories.

See Also: Oracle Database Reference for more information on the
VSPROCESS_MEMORY view.

V$SQL_WORKAREA_HISTOGRAM This view shows the number of work areas executed
with optimal memory size, one-pass memory size, and multi-pass memory size since
instance startup. Statistics in this view are subdivided into buckets that are defined by
the optimal memory requirement of the work area. Each bucket is identified by a
range of optimal memory requirements specified by the values of the columns LOW_
OPTIMAL_SIZE and HIGH_OPTIMAL_SIZE.

Example 7-3 and Example 7—4 show two ways of using V$SQL_WORKAREA_HISTOGRAM.

Example 7-4 Querying V$SQL_WORKAREA_HISTOGRAM: Non-empty Buckets

Consider a sort operation that requires 3 MB of memory to run optimally (cached).
Statistics about the work area used by this sort are placed in the bucket defined by
LOW_OPTIMAL_SIZE = 2097152 (2 MB)and HIGH OPTIMAL_SIZE = 4194303 (4 MB
minus 1 byte), because 3 MB falls within that range of optimal sizes. Statistics are
segmented by work area size, because the performance impact of running a work area
in optimal, one-pass or multi-pass mode depends mainly on the size of that work area.

The following query shows statistics for all non-empty buckets. Empty buckets are
removed with the predicate WHERE TOTAL_EXECUTION!= 0.

SELECT LOW_OPTIMAL_SIZE/1024 low_kb,
(HIGH_OPTIMAL_SIZE+1)/1024 high kb,
OPTIMAL_EXECUTIONS, ONEPASS_EXECUTIONS, MULTIPASSES_EXECUTIONS
FROM V$SQL_WORKAREA HISTOGRAM
WHERE TOTAL_EXECUTIONS != 0;

The result of the query might look like the following;:

LOW_KB HIGH_KB OPTIMAL_EXECUTIONS ONEPASS_EXECUTIONS MULTIPASSES_EXECUTIONS

Configuring and Using Memory 7-45

PGA Memory Management

8 16 156255 0 0

16 32 150 0 0

32 64 89 0 0

64 128 13 0 0

128 256 60 0 0
256 512 8 0 0
512 1024 657 0 0
1024 2048 551 16 0
2048 4096 538 26 0
4096 8192 243 28 0
8192 16384 137 35 0
16384 32768 45 107 0
32768 65536 0 153 0
65536 131072 0 73 0
131072 262144 0 44 0
262144 524288 0 22 0

The query result shows that, in the 1024 KB to 2048 KB bucket, 551 work areas used an
optimal amount of memory, while 16 ran in one-pass mode and none ran in multi-pass
mode. It also shows that all work areas under 1 MB were able to run in optimal mode.

Example 7-5 Querying V$SQL_WORKAREA_HISTOGRAM: Percent Optimal

You can also use V$SQL_WORKAREA_HISTOGRAM to find the percentage of times work
areas were executed in optimal, one-pass, or multi-pass mode since startup. This query
only considers work areas of a certain size, with an optimal memory requirement of at
least 64 KB.

SELECT optimal_count, round(optimal_count*100/total, 2) optimal_perc,
onepass_count, round(onepass_count*100/total, 2) onepass_perc,
multipass_count, round(multipass_count*100/total, 2) multipass_perc

FROM

(SELECT decode (sum(total_executions), 0, 1, sum(total_executions)) total,
sum (OPTIMAL_EXECUTIONS) optimal_count,
sum (ONEPASS_EXECUTIONS) onepass_count,
sum (MULTIPASSES_EXECUTIONS) multipass_count
FROM v$sqgl_workarea_histogram
WHERE low_optimal_size >= 64*1024);

The output of this query might look like the following:

OPTIMAL_COUNT OPTIMAL_PERC ONEPASS_COUNT ONEPASS_PERC MULTIPASS_COUNT MULTIPASS_PERC

This result shows that 81.63% of these work areas have been able to run using an
optimal amount of memory. The rest (18.37%) ran one-pass. None of them ran
multi-pass. Such behavior is preferable, for the following reasons:

= Multi-pass mode can severely degrade performance. A high number of multi-pass
work areas has an exponentially adverse effect on the response time of its
associated SQL operator.

= Running one-pass does not require a large amount of memory; only 22 MB is
required to sort 1 GB of data in one-pass mode.

V$SQL_WORKAREA_ACTIVE You can use this view to display the work areas that are
active (or executing) in the instance. Small active sorts (under 64 KB) are excluded
from the view. Use this view to precisely monitor the size of all active work areas and
to determine if these active work areas spill to a temporary segment. Example 7-6

7-46 Oracle Database Performance Tuning Guide

PGA Memory Management

shows a typical query of this view:

Example 7-6 Querying V$SQL_WORKAREA_ACTIVE

SELECT to_number (decode (SID, 65535, NULL, SID)) sid,
operation_type OPERATION,
trunc (EXPECTED_SIZE/1024) ESIZE,
trunc (ACTUAL_MEM_USED/1024) MEM,
trunc (MAX_MEM_USED/1024) "MAX MEM",
NUMBER_PASSES PASS,
trunc (TEMPSEG_SIZE/1024) TSIZE

FROM VS$SQL_WORKAREA ACTIVE
ORDER BY 1,2;

The output of this query might look like the following:

SID OPERATION ESIZE MEM MAX MEM PASS TSIZE
8 GROUP BY (SORT) 315 280 904 0

8 HASH-JOIN 2995 2377 2430 1 20000
9 GROUP BY (SORT) 34300 22688 22688 0
11 HASH-JOIN 18044 54482 54482 0

12 HASH-JOIN 18044 11406 21406 1 120000

This output shows that session 12 (column SID) is running a hash-join having its work
area running in one-pass mode (PASS column). This work area is currently using 11406
KB of memory (MEM column) and has used, in the past, up to 21406 KB of PGA memory
(MAX MEM column). It has also spilled to a temporary segment of size 120000 KB. Finally,
the column ESIZE indicates the maximum amount of memory that the PGA memory
manager expects this hash-join to use. This maximum is dynamically computed by the
PGA memory manager according to workload.

When a work area is deallocated—that is, when the execution of its associated SQL
operator is complete—the work area is automatically removed from the v$SQL_
WORKAREA_ACTIVE view.

V$SQL_WORKAREA Oracle Database maintains cumulative work area statistics for each
loaded cursor whose execution plan uses one or more work areas. Every time a work
area is deallocated, the V$SQL_WORKAREA table is updated with execution statistics for
that work area.

V$SQL_WORKAREA can be joined with V$SQL to relate a work area to a cursor. It can even
be joined to V$SQL_PLAN to precisely determine which operator in the plan uses a work
area.

Example 7-7 shows three typical queries on the V$SQL_WORKAREA dynamic view:

Example 7-7 Querying V$SQL_WORKAREA
The following query finds the top 10 work areas requiring most cache memory:

SELECT *

FROM (SELECT workarea_address, operation_type, policy, estimated_optimal_size
FROM V$SQL_WORKAREA
ORDER BY estimated_optimal_size DESC)

WHERE ROWNUM <= 10;

The following query finds the cursors with one or more work areas that have been
executed in one or even multiple passes:

col sql_text format A80 wrap
SELECT sql_text, sum(ONEPASS_EXECUTIONS) onepass_cnt,

Configuring and Using Memory 7-47

PGA Memory Management

sum (MULTIPASSES_EXECUTIONS) mpass_cnt
FROM VS$SQL s, V$SQL_WORKAREA wa
WHERE s.address = wa.address
GROUP BY sqgl_text
HAVING sum(ONEPASS_EXECUTIONS+MULTIPASSES_EXECUTIONS)>0;

Using the hash value and address of a particular cursor, the following query displays
the cursor execution plan, including information about the associated work areas.

col "0/1/M" format all
col name format a20
SELECT operation, options, object_name name, trunc(bytes/1024/1024) "input (MB)",
trunc (last_memory used/1024) last_mem,
trunc (estimated_optimal_size/1024) optimal_mem,
trunc (estimated_onepass_size/1024) onepass_mem,
decode (optimal_executions, null, null,
optimal_executions||'/'||onepass_executions||'/'||
multipasses_executions) "0/1/M"
FROM VS$SQL_PLAN p, VSSQL_WORKAREA w
WHERE p.address=w.address (+)
p.hash_value=w.hash_value(+)
p.id=w.operation_id(+)
AND p.address='88BB460C'
p.hash_value=3738161960;

OPERATION OPTIONS NAME input (MB) LAST_MEM OPTIMAL_ME ONEPASS_ME 0/1/M

SELECT STATE

HASH GROUP BY 4582 8 16 16 16/0/0
HASH JOIN SEMI 4582 5976 5194 2187 16/0/0
TABLE ACCESS FULL ORDERS 51
TABLE ACCESS FUL LINEITEM 1000

You can get the address and hash value from the V$SQL view by specifying a pattern in
the query. For example:

SELECT address, hash_value
FROM V$SQL
WHERE sgl_text LIKE '$my_pattern%';

Tuning PGA_AGGREGATE_TARGET

To help you tune the initialization parameter PGA_AGGREGATE_TARGET, Oracle Database
provides the VSPGA_TARGET_ADVICE and VS$PGA_TARGET_ADVICE_HISTOGRAM views. By
examining these views, you no longer need to use an empirical approach to tune the
value of PGA_AGGREGATE_TARGET. Instead, you can use these views to determine how
key PGA statistics will be impacted if you change the value of PGA_AGGREGATE_TARGET.

In both views, values of PGA_AGGREGATE_TARGET used for the prediction are derived
from fractions and multiples of the current value of that parameter, to assess possible
higher and lower values. Values used for the prediction range from 10 MB to a
maximum of 256 GB.

Oracle Database generates PGA advice performance views by recording the workload
history and then simulating this history for different values of PGA_AGGREGATE_TARGET.
The simulation process happens in the background and continuously updates the
workload history to produce the simulation result. You can view the result at any time
by querying V$PGA_TARGET_ADVICE or V$PGA_TARGET ADVICE_HISTOGRAM.

To enable automatic generation of PGA advice performance views, make sure the
following parameters are set:

7-48 Oracle Database Performance Tuning Guide

PGA Memory Management

ms PGA_AGGREGATE_TARGET, to enable automatic PGA memory management (see
"Setting PGA_AGGREGATE_TARGET Initially" on page 7-42).

m STATISTICS_LEVEL. Set this to TYPICAL (the default) or ALL; setting this parameter
to BASIC turns off generation of PGA performance advice views.

The content of these PGA advice performance views is reset at instance startup or
when PGA_AGGREGATE_TARGET is altered.

Note: Simulation cannot include all factors of real execution, so
derived statistics may not exactly match up with real performance
statistics. Always monitor the system after changing PGA_
AGGREGATE_TARGET to verify that the new performance is what you
expect.

VS$PGA_TARGET_ADVICE This view predicts how the statistics cache hit percentage
and over allocation count in VSPGASTAT will be impacted if you change the value of
the initialization parameter PGA_AGGREGATE_TARGET. Example 7-8 shows a typical
query of this view.

Example 7-8 Querying VSPGA_TARGET _ADVICE

SELECT round (PGA_TARGET FOR_ESTIMATE/1024/1024) target_mb,
ESTD_PGA_CACHE_HIT PERCENTAGE cache_hit_perc,
ESTD_OVERALLOC_COUNT

FROM V$PGA_TARGET ADVICE;

The output of this query might look like the following:

TARGET_MB CACHE_HIT_PERC ESTD_OVERALLOC_COUNT

63 23 367
125 24 30
250 30 3
375 39 0
500 58 0
600 59 0
700 59 0
800 60 0
900 60 0

1000 61 0
1500 67 0
2000 76 0
3000 83 0
4000 85 0

The result of the this query can be plotted as shown in Figure 7-3:

Configuring and Using Memory 7-49

PGA Memory Management

Figure 7-3 Graphical Representation of VSPGA_TARGET_ADVICE

Cache
Hit
Percentage Optimal Value

85.00

80.00

75.00

70.00
4
65.00 //
/)

60.00 /
55.00

50.00

45.00 / Current setting
40.00 /

35.00

30.00 //
25.00

20.00

15.00

10.00

5.00

0.00

0 500MB 1GB 1.5GB 2GB 2.5GB 3GB 3.5GB 4GB
PGA_AGGREGATE_TARGET

The curve shows how the PGA cache hit percentage improves as the value of PGA_
AGGREGATE_TARGET increases. The shaded zone in the graph is the over allocation
zone, where the value of the column ESTD_OVERALLOCATION_COUNT is nonzer