

Resolving In-Doubt Transactions – by ilker taysi

Distributed transactions perform DML on multiple databases which is a bit more complicated task
because the database must coordinate the consitency in those seperate or even perhaps between
different DBMSs (like Oracle - MS SQL). To ensure the transaction atomicity, Oracle implements a 2-
phase commit mechanism through which the distributed transactions undergo some phases like
prepare, commit, forget, etc. This phases constitute the hand-shake mechanism of the distributed
transaciton.

However, sometimes things may go wrong (due to some network, system problem or even a
reconfiguration of the underlying objects) and one of the phases fails while others are ok. Here, we
say that the transaction becomes in-doubt. Normallly this problem should be handled by the RECO
process itself, but in some cases this cannot br performed.

 Why RECO cannot perform in some cases?

One of the databases involved in the distributed transaction might be unreachable (netowrk, system
issues etc.) while the RECO was trying to resolve the problem (even when retrying to
recover). (UNSTUCK)

The lookup tables of the “2-phase commit” mechanism might become inconsistent with the
transaction itself. (STUCK)

Handling UnStuck Transactions

Hopefully, there is no inconsistency between the lookup tables and the transaction and the following
code resolves the problem:

To see the waiting transactions -> DBA_2PC_PENDING view.

SQL> select local_tran_id,global_tran_id, state,mixed, commit# from dba_2pc_pending;

97.33.166765 ORCL.781a8889.97.33.166765 prepared no 60787107482

Here, '97.33.166765' is the transaction id of the distributed transaction, which will be used in the
following commands.

If the state of the transaction is “prepared” and there is no inconsistency, the transaction can be
forced to rollback, or maybe if the underlying problem which caused the in-doubt transaction is
resolved the transaction can be forced to commit as follows:

SQL> ROLLBACK FORCE '97.33.166765' /* ->replace with ur own trx_id */
or
SQL> COMMIT FORCE '97.33.166765' /* ->replace with ur own trx_id */

Note: If the command hangs, go to the “Handling Stuck DBA_2PC_PENDING” section.

If the state of the transaction is “collecting” and you execute the above command, you may see an
error like:

ERROR at line 1:
ORA-02058: no prepared transaction found with ID 97.33.166765

Execute the following command to purge the transaction

SQL> EXECUTE DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY('97.33.166765'); /* ->replace with
ur own trx_id */

PL/SQL procedure successfully completed.

Test to confirm that the transaction has gone

SQL> SELECT * FROM DBA_2PC_PENDING;

No rows returned.

The DBA_2PC_PENDING view is a lookup view, so it might be misleading sometimes. The actual
transaction entry view is X$KTUXE ([K]ernel [T]ransaction [U]ndo Transa[X]tion [E]ntry).
This view gives info about the state of transactions that require transaction recovery:

X$KTUXE

COLUMN TYPE DESCRIPTION

ADDR RAW Address of this row in SGA

INDX NUMBER Index of this row in SGA

INST_ID NUMBER Instance Number

KTUXEUSN NUMBER Undo Segement #

KTUXESLT NUMBER Slot Number

KTUXESQN NUMBER Wrap Number

KTUXERDBF NUMBER Relative File

KTUXERDBB NUMBER Relative Block

KTUXESCNB NUMBER SCN Base prepare/commit

KTUXESCNW NUMBER SCN Wrap prepare/commit

KTUXESTA VARCHAR2(16) Transaction Status

KTUXECFL VARCHAR2(24) Transaction Flags

KTUXEUEL NUMBER Link to Coommit List

The concat of KTUXEUSN, KTUXESLT and KTUXESQN gives us the transacion number:

KTUXEUSN. KTUXESLT. KTUXESQN = 97.33.166765

So, we can query the transaction view like:

SQL> SELECT * FROM X$KTUXE WHERE
 KTUXEUSN=97
AND KTUXESLT=33
AND KTUXESQN =166765;

No rows returned.

It should return no value, since the transaction has gone...

Handling Stuck Transactions

Our ultimate goal is not seeing the transaction in X$KTUXE table; and ensuring that the dictionary
tables like PENDING_TRANS$ to be consistent with this information.

Stuck transactions can be examined under the below conditions:

Cond 1: DBA_2PC_PENDING view have entries about our transaction but there is no transaction

in reality

The condition is that; when we issue select to the dictionary views like the DBA_2PC_PENDING,
PENDING_TRANS$, etc. we see the transaction, but the transaction does not exist in X$KTUXE view.

If the state of the transaction (in DBA_2PC_PENDING) is committed, rollback forced or commit
forced then it can be cleaned by:

SQL> EXECUTE DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY('97.33.166765'); /* ->replace with
ur own trx_id */

PL/SQL procedure successfully completed.

If the state of the transaction is prepared, we have to clean manually as follows:

SQL> DELETE FROM SYS.PENDING_TRANS$ WHERE LOCAL_TRAN_ID = '97.33.166765'; /* ->replace
with ur own trx_id */
SQL> DELETE FROM SYS.PENDING_SESSIONS$ WHERE LOCAL_TRAN_ID ='97.33.166765' ; /* -
>replace with ur own trx_id */
SQL> DELETE FROM SYS.PENDING_SUB_SESSIONS$ WHERE LOCAL_TRAN_ID = '97.33.166765'; /* -
>replace with ur own trx_id */
SQL> COMMIT;

Note: DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY command does not purge the actual
transaction in X$KTUXE view. It touches the dictionary views.
To really purge the transaction, we need a commit or rollback. In the above case, however, there is
no real transaction so we don’t need to worry about rollback or commit, all we do is cleaning the
dictionary...

Cond 2: DBA_2PC_PENDING view does NOT have entries about our transaction but there IS A

transaction

This is something like a orphan transaction that the dictionary is not aware of.

Trying to force commit or rollback this transaction may result in error like below, since the dictionary
is not aware:

SQL> ROLLBACK FORCE '97.33.166765' /* ->replace with ur own trx_id */

ORA-02058: no prepared transaction found with ID 97.33.166765

What we need to do at this point is; recovering our transaction from being an orphan by inserting
some dummy records into dictionay tables (so the views...) and then force a rollback or commit:
You do not have to change the parameters in the insert command other than the transaction id.

SQL> ALTER SYSTEM DISABLE DISTRIBUTED RECOVERY;

SQL> INSERT INTO PENDING_TRANS$ (LOCAL_TRAN_ID, GLOBAL_TRAN_FMT, GLOBAL_ORACLE_ID,
STATE, STATUS, SESSION_VECTOR, RECO_VECTOR, TYPE#, FAIL_TIME,RECO_TIME)
VALUES
(
 '97.33.166765', /* ->replace with ur own trx_id */
 306206,
 'XXXXXXX.12345.1.2.3',
 'prepared','P',
 hextoraw('00000001'),
 hextoraw('00000000'),
 0, sysdate, sysdate
);

SQL> INSERT INTO PENDING_SESSIONS$
VALUES
(
 '97.33.166765', /* ->replace with ur own trx_id */
 1, hextoraw('05004F003A1500000104'),
 'C', 0, 30258592, '',
 146
);

COMMIT;

Now, we should be able to rollback or commit.

SQL> ROLLBACK FORCE '97.33.166765' /* ->replace with ur own trx_id */
or
SQL> COMMIT FORCE '97.33.166765' /* ->replace with ur own trx_id */

Lastly, we remove the dummy entry from the dictionary:

SQL> ALTER SYSTEM ENABLE DISTRIBUTED RECOVERY;

SQL> ALTER SYSTEM SET "_smu_debug_mode" = 4;

SQL> COMMIT;

SQL> EXECUTE DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY('97.33.166765'); /* ->replace with
ur own trx_id */

SQL> ALTER SYSTEM SET "_smu_debug_mode" = 0;

SQL> COMMIT;

Check to see whether the transaction has gone:

SQL> SELECT * FROM X$KTUXE WHERE
 KTUXEUSN=97
AND KTUXESLT=33
AND KTUXESQN =166765;

No rows returned.

Cond 3: DBA_2PC_PENDING has entry and there is a transaction but COMMIT or ROLLBACK

HANGS!

In the situation, where COMMIT FORCE or ROLLBACK FORCE hangs,

Trying to purge the transaction will give an error like:

SQL> EXECUTE DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY('97.33.166765'); /* ->replace with
ur own trx_id */

ERROR at line 1:
ORA-06510: PL/SQL: unhandled user-defined exception
ORA-06512: at "SYS.DBMS_TRANSACTION", line 94
ORA-06512: at line 1

Solution: The solution is the combination of Cond1 and Cond2:

First, delete the dictionary entries.

SQL> DELETE FROM SYS.PENDING_TRANS$ WHERE LOCAL_TRAN_ID = '97.33.166765'; /* ->replace
with ur own trx_id */
SQL> DELETE FROM SYS.PENDING_SESSIONS$ WHERE LOCAL_TRAN_ID ='97.33.166765' ; /* -
>replace with ur own trx_id */
SQL> DELETE FROM SYS.PENDING_SUB_SESSIONS$ WHERE LOCAL_TRAN_ID = '97.33.166765'; /* -
>replace with ur own trx_id */
SQL> COMMIT;

Then, insert dummy record, force commit and finally purge the transaction.

SQL> ALTER SYSTEM DISABLE DISTRIBUTED RECOVERY;

SQL> INSERT INTO PENDING_TRANS$ (LOCAL_TRAN_ID, GLOBAL_TRAN_FMT, GLOBAL_ORACLE_ID,
STATE, STATUS, SESSION_VECTOR, RECO_VECTOR, TYPE#, FAIL_TIME,RECO_TIME)
VALUES
(
 '97.33.166765', /* ->replace with ur own trx_id */
 306206,
 'XXXXXXX.12345.1.2.3',
 'prepared','P',
 hextoraw('00000001'),
 hextoraw('00000000'),
 0, sysdate, sysdate

);

SQL> INSERT INTO PENDING_SESSIONS$
VALUES
(
 '97.33.166765', /* ->replace with ur own trx_id */
 1, hextoraw('05004F003A1500000104'),
 'C', 0, 30258592, '',
 146
);

COMMIT;

SQL> COMMIT FORCE '97.33.166765' /* ->replace with ur own trx_id */

SQL> EXECUTE DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY('97.33.166765'); /* ->replace with
ur own trx_id */

