

© 2018 KADIR ILKER TAYSI ALL RIGHTS RESERVED
www.oracleguard.com

Easy Application Failover with DataGuard
Application failover when database failover or switchover is facilitated by Data Guard. This is not
the real seamless failover but works perfect for most of the scenarios...

© 2018 KADIR ILKER TAYSI ALL RIGHTS RESERVED
www.oracleguard.com

1. PREFACE

This tutorial covers the situation where an application still has to be able to connect to the primary
database after a failover or a switcover is initiated on a dataguard system. This is not the actual
seamless application failover. It does not employ any clusterware components like FAN or TAF. That
is why I call this "EASY" Application Failover. It may actually have a different name but I didn't come
across with an Oracle document about it... so it is "Easy Applcation Failover with Datagaurd" for me.

2. HOW IT WORKS

The below diagram shows the architecture of the setup.

The logic behind the application continuity in the case of a swithover (or failover) depends on a
virtual service that can be started or stopped with a trigger depending on the role of the database
server. To be more precise, we should implement a role based service that will only be enabled when
the database server is in primary role. In fact, from the version 11.2 on, this role based service is not
handled by triggers but the clusterware as follows:

srvctl add service -db orcl -service vservice -role primary

However, it might be the case that we are working on a single instance database without a
clusterware, so the trigger methodology can still be used.

As a result, the service name that the application should be using, would be active only on the
primary side at a given time. Even the application may try to go to the standby (if it is the first
connection defined), it will see that there is no such service and proceed to the next adress in the list.

© 2018 KADIR ILKER TAYSI ALL RIGHTS RESERVED
www.oracleguard.com

3. IMPLEMENTATION

Create a virtual service on the primary database. (Of course, every definition/creation of an object in
primary database will be replicated to the standby server too.)

Create a virtual service
DECLARE
 PARAM_ARRAY DBMS_SERVICE.SVC_PARAMETER_ARRAY;
BEGIN
 PARAM_ARRAY('FAILOVER_TYPE') := 'SELECT';
 PARAM_ARRAY('REPLAY_INITIATION_TIMEOUT'):=100;
 PARAM_ARRAY('RETENTION_TIMEOUT') :=86400;
 PARAM_ARRAY('FAILOVER_DELAY') :=1;
 PARAM_ARRAY('FAILOVER_RETRIES') :=5;
 PARAM_ARRAY('COMMIT_OUTCOME') :='TRUE';
 PARAM_ARRAY('aq_ha_notifications') :='TRUE';
 DBMS_SERVICE.CREATE_SERVICE('VSERVICE','VSERVICE' , PARAM_ARRAY);
END;
/

Start the virtual service

BEGIN
 DBMS_SERVICE.START_SERVICE('VSERVICE');
END;
/

If we have a look at the services on the primary server, we should see this new virtual service:

Now we have to create the triggers that will trigger the activation of this virtual service in the case of
a role transition. There should be 2 triggers one for detecting the change of the database role and
the other for detecting the startup of the database. (Meybe merging them into one single trigger is a
good idea but this is better for readibility)

© 2018 KADIR ILKER TAYSI ALL RIGHTS RESERVED
www.oracleguard.com

Trigger1

CREATE TRIGGER START_SERVICE_ONROLECHG AFTER DB_ROLE_CHANGE ON DATABASE
DECLARE
 V_ROLE VARCHAR(30);
BEGIN
 SELECT DATABASE_ROLE INTO V_ROLE FROM V$DATABASE;

 IF V_ROLE = 'PRIMARY' THEN
 DBMS_SERVICE.START_SERVICE('VSERVICE');
 ELSE
 DBMS_SERVICE.STOP_SERVICE('VSERVICE');
 END IF;
END;
/

Trigger2

CREATE OR REPLACE TRIGGER START_SERVICE_ONSTARTUP AFTER STARTUP ON DATABASE
DECLARE
 V_ROLE VARCHAR(30);
BEGIN
 SELECT DATABASE_ROLE INTO V_ROLE FROM V$DATABASE;

 IF V_ROLE = 'PRIMARY' THEN
 DBMS_SERVICE.START_SERVICE('VSERVICE');
 ELSE
 DBMS_SERVICE.STOP_SERVICE('VSERVICE');
 END IF;
END;
/

Now, the application that is to connect to our database should use a connection string like:

DGCONNECTION =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = 192.168.136.111)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = 192.168.136.112)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = VSERVICE)
)
)

Both database servers are included in the connection but one of them (primary) has the virtual
service at a given time.

© 2018 KADIR ILKER TAYSI ALL RIGHTS RESERVED
www.oracleguard.com

Actually, I also tested this configuration with a tiny .Net web application:

The connections I used for the application is as follows:

© 2018 KADIR ILKER TAYSI ALL RIGHTS RESERVED
www.oracleguard.com

And the TNS entry is as follows:

DGCONNECTION =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = 192.168.136.111)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = 192.168.136.112)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = VSERVICE)
)
)

When I switchover the servers, the page shows (naturally):

And the refreshes on the page has no delays...

Long story short, if you are planning to switchover on a planned basis, this mechanism can be used.
But it is not for a 7/24 running critical production system. It does not provide a real Application
Failover!

